10.1002/anie.201800421
Angewandte Chemie International Edition
COMMUNICATION
H. Wadepohl, D. W. Stephan, A. S. K. Hashmi, J. Am. Chem. Soc.
2015, 137, 15469.
In conclusion, we have developed an unprecedented inverse
hydroboration transformation of imines with organoboranes by
means of photoredox and phenylmethanethiol cooperative
catalysis. The experimental and DFT calculation results
demonstrate that matched thiol organocatalyst is one key factor,
as it not only expedites the generation of boryl radical but also
significantly depresses the classical ionic reduction pathway.
Several impressive features, such as mild reaction conditions,
radical initiator-free, good functional group tolerance and late-
stage hydroboration, make this protocol practical to access
medically important N-aryl -aminoboron compounds. A novel
radical-radical C-B coupling is likely based on mechanistic
studies. The exploration of inverse hydroboration strategy for
the synthesis of enantiopure N-aryl -aminoborons is currently
ongoing in our lab.
[4]
For recent reviews: a) G. Yan, D. Huang, X. Wu, Adv. Synth. Catal.
Doi:10.1002/adsc.201701030; b) G. Duret, R. Quinlan, P. Bisseret, N.
Blanchard, Chem. Sci. 2015, 6, 5366.
[5]
[6]
[7]
Our work: G. Wang, H. Zhang, J. Zhao, W. Li, J. Cao, C. Zhu, S.
Li, Angew. Chem. Int. Ed. 2016, 55, 5985.
D. P. Curran, A. Solovyev, M. M. Brahmi, L. Fensterbank, M.
Malacria, E. Lacôte, Angew. Chem. Int. Ed. 2011, 50, 10294.
Selected examples: a) S. Ueng, M. M. Brahmi, L.
E M. Malacria, D. P. Curran, J. Am. Chem. Soc.
2008, 130, 10082; b) S. Ueng, A. Solovyev, X. Yuan, S. J. Geib, L.
E M. Malacria, M. Newcomb, J. C. Walton, D.
P. Curran, J. Am. Chem. Soc. 2009, 131, 11256; c) J. C. Walton, M.
M. Brahmi, L. Fensterbank, E. M. Malacria, Q. Chu, S.
Ueng, A. Solovyev, D. P. Curran, J. Am. Chem. Soc. 2010, 132, 2350;
d) X. Pan, E. D. P. Curran, J. Am. Chem. Soc.
2012, 134, 5669; e) J. S. Telitel, M. A. Tehfe, J. P.
Fouassier, D. P. Curran, E Angew. Chem. Int. Ed. 2012, 51,
5958; f) T. Kawamoto, S. Geib, D. P. Curran, J. Am. Chem. Soc. 2015,
137, 8617; g) X. Pan, A.-L. Vallet, S. Schweizer, K. Dahbi, B.
Delpech, N. Blanchard, B. Graff, S. J. Geib, D. P. Curran, J.
E J. Am. Chem. Soc. 2013, 135, 10484; h) S. Telitel,
A.-L. Vallet, S. Schweizer, B. Delpech, N. Blanchard, F. Morlet-
Savary, B. Graff, D. P. Curran, M. Robert, E. , J.
Am. Chem. Soc. 2013, 135, 16938; i) T. Watanabe, D. Hirose, D. P.
Curran, T. Taniguchi, Chem. –Eur. J. 2017, 23, 5404.
Acknowledgements
We gratefully acknowledge the National Natural Science
Foundation of China (21702098, 21732003, 21703118 and
21672099), “1000-Y P ” and Shandong Provincial
Natural Science Foundation (No. ZR2017MB038) for financial
support.
[8]
[9]
a) S. Ren, F. Zhang, J. Qi, Y. Huang, A. Xu, H. Yan, Y. Wang, J.
Am. Chem. Soc. 2017, 139, 6050; b) Y. Yu, F. Zhang, J. Cheng, J.
Hei, W. Deng, Y. Wang, Org. Lett. 2018, 20, 24; y
p y y : ) -
P P
Macromolecules 2010, 43, 2261.
Conflict of interest
The authors declare no conflict of interest.
For reviews about photoredox catalysis: a) C. K. Prier, D. A. Rankic, D.
W. C. MacMillan, Chem. Rev. 2013, 113, 5322; b) J. Xuan, W.-J. Xiao,
Angew. Chem. Int. Ed. 2012, 51, 6828. For photoredox and thiol
catalysis: c) K. Qvortrup, D. A. Rankic, D. W. C. MacMillan, J. Am.
Chem. Soc. 2014, 136, 626; d) W. Li, Y. Duan, M. Zhang, J. Cheng,
C. Zhu, Chem. Comm. 2016, 52, 7596; e) J. Liu, J. Xie, C. Zhu, Org.
Chem. Front. 2017, 4, 2433.
Keywords: imines • hydroboration • visible-light photoredox
catalysis • radical • C-B coupling
[1]
For pioneering and selected work: a) H. C. Brown, B. C. Subba Rao, J.
Am. Chem. Soc. 1956, 78, 5694; b) R. T. Baker, Calabrese, J. C.
Westcott, S. A. J. Organomet. Chem. 1995, 498, 109; c) C. H. Tien, M.
R. Adams, M. J. Ferguson, E. R. Johnson, A. W. H. Speed, Org. Lett.
2017, 19, 5565; d) M. R. Adams, C.-H. Tien, R. Mcdonald, A. W. H.
Speed, Angew. Chem. Int. Ed. 2017, 56, 16660; e) P. Eisenberger, A.
B. Bailey, C. M. Crudden, J. Am. Chem. Soc. 2012, 134, 17384; f) P. A.
Chase, G. C. Welch, T. Jurca, D. W. Stephan, Angew. Chem. Int. Ed.
2007, 46, 8050; g) M. R. Adams, C. H. Tien, B. S. N. Huchenski, M. J.
Ferguson, A. W. H. Speed, Angew. Chem. Int. Ed. 2017, 56, 6268; h)
C. C. Chong, R. Kinjo, ACS Catal. 2015, 5, 3238; i) T. Liu, L. Chen, Z.
Sun, J. Org. Chem. 2015, 80,11441.
[10] a) J. Xie, H. Jin, A. S. K. Hashmi, Chem. Soc. Rev. 2017, 46, 5193; b)
W. Li, W. Xu, J. Xie, S. Yu, C. Zhu, Chem. Soc. Rev. DOI:
10.1039/C7CS00507E; c) J. Xie, Q. Xue, H. Jin, H. Li, Y. Cheng, C.
Zhu, Chem. Sci. 2013, 4, 1281; d) J. Xie, H. Li, J. Zhou, Y. Cheng, C.
Zhu, Angew. Chem. Int. Ed. 2012, 51, 1252; e) P. Xu, G. Wang, Y.
Zhu, W. Li, Y. Cheng, S. Li, C. Zhu, Angew. Chem. Int. Ed. 2016, 55,
2939; f) P. Xu, W. Li, J. Xie, C. Zhu, Acc. Chem. Res. DOI:
10.1021/acs.accounts.7b00565.
[11] a) L. Qi, Y. Chen, Angew. Chem. Int. Ed. 2016, 55, 13312; b) D.
Hager, D. W. C. MacMillan, J. Am. Chem. Soc. 2014, 136, 16986; c) M.
Nakajima, E. Fava, S. Loescher, Z. Jiang, M. Rueping, Angew.
Chem. Int. Ed. 2015, 54, 8828; d) E. Fava, A. Millet, M. Nakajima, S.
Loescher, M. Rueping, Angew. Chem. Int. Ed. 2016, 55, 6776; e) H.
Zhang, S. Yu, J. Org. Chem. 2017, 82, 9995; f) C. Wang, J. Qin, X.
Shen, R. Riedel, K. Harms, E. Meggers, Angew. Chem. Int. Ed. 2016,
55, 685; g) D. Uraguchi, N. Kinoshita, T. Kizu, T. Ooi, J. Am. Chem.
Soc. 2015, 137, 13768; h) J. Jeffrey, F. R. P j ć D. W. C.
MacMillan, J. Am. Chem. Soc. 2016, 137, 8404.
[2]
[3]
a) R. Smoum, A. Rubinstein, V. M. Dembitsky, M. Srebnik, Chem. Rev.
2012, 112, 4156; b) P. Andrés, G. Ballano, M. I. Calaza, C. Cativiela,
Chem. Soc. Rev. 2016, 45, 2291; c) J. C. Tellis, C. B. Kelly, D. N.
Primer, M. Jouffroy, N. R. Patel, G. A. Molander, Acc. Chem. Res. 2016,
49, 1429; Selected recent examples: d) K. Miyazawa, T. Koike, M. Akita,
Adv. Synth. Catal. 2014, 356, 2749; e) M. E. Khatib, R. Serafim, G. A.
Molander, Angew. Chem. Int. Ed. 2016, 55, 254.
a) E. C. Neeve, S. J. Geier, I. A. I. Mkhalid, S. Westcott, T. B. Marder,
Chem. Rev. 2016, 116, 9091; b) M. A. Beenen, C. An, J. A. Ellman, J.
Am. Chem. Soc. 2008, 130, 6910; c) K. Wen, H. Wang, J. Chen, H.
Zhang, X. Cui, C. Wei, E. Fan, Z. Sun, J. Org. Chem. 2013, 78, 3405;
d) D. Wang, P. Cao, B. Wang, T. Jia, Y. Lou, M. Wang, J. Liao, Org.
Lett. 2015, 17, 2420; e) K. Hong, J. P. Morken, J. Am. Chem. Soc.
2013, 135, 9252; f) G. Mann, K. D. John, R. T. Baker, Org. Lett. 2000,
2, 2105; g) S H. G y E z Chem. Commun. 2012,
48, 3769; h) M. M. Hansmann, R. L. Melen, M. Rudolph, F. Rominger,
[12] y g NH y g − x g
easy to occur from solvent. Indeed, even we could observe 13-D
compound by HRMS analysis, only 13-H was obtained after normal
work-up on silica gel column chromatography.
[13] a) A. Studer, Chem. -Eur. J. 2001, 7, 1159; b) H. Fischer, Chem. Rev.
2001, 101, 3581; c) A. Studer, Chem. Soc. Rev. 2004, 33, 267; d) A.
Studer, D. P. Curran, Angew. Chem. Int. Ed. 2016, 55, 58; e) J. Xuan,
T.-T. Zeng, Z.-J. Feng, Q.-H. Deng, J.-R. Chen, L.-Q. Lu, W.-J. Xiao,
This article is protected by copyright. All rights reserved.