[11C]Methylation of Amines
Scheme 3. Production of β-amyloid radiotracer [11C]PIB. The RCY value was estimated on the basis of trapped 11CO2 within the reactor
and is decay-corrected from the end of 11CO2 trapping inside reactor.
and a similar production of 11CO2 by the same cyclotron,
PET Imaging: Physics, Chemistry, and Regulations, Springer,
New York, 2010.
[11C]PIB was obtained with a similar radiochemical yield of
[2] a) C. C. Wagner, O. Langer, Adv. Drug Delivery Rev. 2011, 63,
45% and a specific activity of around 50 GBq/μmol.
539–546; b) R. Chakravarty, H. Hong, W. Cai, Mol. Pharm.
2014, 11, 3777–3797; c) J. K. Willmann, N. van Bruggen, L. M.
Dinkelborg, S. S. Gambhir, Nat. Rev. Drug Discovery 2008, 7,
591–607.
Conclusions
[3] a) P. W. Miller, N. J. Long, R. Vilar, A. D. Gee, Angew. Chem.
Int. Ed. 2008, 47, 8998–9033; Angew. Chem. 2008, 120, 9136–
We have demonstrated the proof-of-concept of direct and
9172; b) Z. Li, P. S. Conti, Adv. Drug Delivery Rev. 2010, 62,
selective amine [11C]methylation by the direct use of cyclo-
1031–1051; c) P. A. Schubiger, L. Lehmann, PET Chemistry:
tron-produced 11CO2. Even if some improvements are still
The Driving Force in Molecular Imaging, Springer, Berlin, Ger-
required, these preliminary data should open the way for
new developments of direct and simple radiolabeling meth-
ods.
many, 2007.
[4] a) L. Li, M. N. Hopkinson, R. L. Yona, R. Bejot, A. D. Gee,
V. Gouverneur, Chem. Sci. 2011, 2, 123; b) E. L. Cole, M. N.
Stewart, R. Littich, R. Hoareau, P. J. H. Scott, Curr. Top. Med.
Chem. 2014, 14, 875–900.
[5] B. H. Rotstein, S. H. Liang, J. P. Holland, T. L. Collier, J. M.
Hooker, A. A. Wilson, N. Vasdev, Chem. Commun. 2013, 49,
5621–5629.
[6] a) M. Allard, E. Fouquet, D. James, M. Szlosek-Pinaud, Curr.
Med. Chem. 2008, 15, 235–277; b) P. J. H. Scott, Angew. Chem.
Int. Ed. 2009, 48, 6001–6004; Angew. Chem. 2009, 121, 6115–
6118.
[7] P. J. Riss, S. Lu, S. Telu, F. I. Aigbirhio, V. W. Pike, Angew.
Chem. Int. Ed. 2012, 51, 2698–2702; Angew. Chem. 2012, 124,
2752–2756.
[8] a) J. M. Hooker, A. T. Reibel, S. M. Hill, M. J. Schueller, J. S.
Fowler, Angew. Chem. Int. Ed. 2009, 48, 3482–3485; Angew.
Chem. 2009, 121, 3534–3537; b) J. M. Hooker, M. Schönberger,
H. Schieferstein, J. S. Fowler, Angew. Chem. Int. Ed. 2008, 47,
5989–5992; Angew. Chem. 2008, 120, 6078–6081; c) A. A. Wil-
son, A. Garcia, S. Houle, O. Sadovski, N. Vasdev, Chem. Eur.
J. 2011, 17, 259–264.
Experimental Section
Synthesis of [11C]PIB (3l): Cyclotron-produced 11CO2, trapped
(953 mCi) on a column of molecular sieves (4 Å), was released by
purging the heated column (350 °C) with He gas and bubbled,
through Teflon® lines, into a reactor containing ZnCl2 (1.3 mg),
IPr (3.5 mg), and 1l (1.7 mg) in diglyme (400 μL) and PhSiH3
(23 μL) cooled to 0 °C (11CO2 traps: 711 mCi). The Teflon® lines
were removed when the radioactivity content reached a maximum
and the reacting mixture was heated at 150 °C for 20 min. After
cooling, the HPLC mobile phase (2.2 mL) was added to the mix-
ture and the resulting solution was purified by HPLC on a Waters
Symmetry-Prep C18 column (7 μm, 7.8ϫ300 mm) at a flow rate of
4 mL/min (H2O/MeCN, 60:40, v/v). The [11C]PIB fraction (tR
=
11 min) was collected, diluted in water (40 mL), and formulated by
solid-phase extraction (SPE). After rinsing with water (10 mL), the
purified product was released from the Sep-Pak (Waters Plus tC18)
with ethanol (1 mL) and water (2 mL) in a sterile vial (57 mCi).
[9] a) C. A. Mathis, Y. Wang, D. P. Holt, G.-F. Huang, M. L.
Debnath, W. E. Klunk, J. Med. Chem. 2003, 46, 2740–2754; b)
A. A. Wilson, A. Garcia, A. Chestakova, H. Kung, S. Houle,
J. Labelled Compd. Radiopharm. 2004, 47, 679–682.
[10]
[11]
G. Antoni, J. Labelled Compd. Radiopharm. 2015, 58, 65–72.
a) V. Gomez-Vallejo, J. Llop, Nucl. Med. Commun. 2011, 32,
1011–1017; b) C. Philippe, D. Haeusler, M. Mitterhauser, J.
Ungersboeck, H. Viernstein, R. Dudczak, W. Wadsak, Appl.
Radiat. Isot. 2011, 69, 1212–1217; c) M. Verdurand, G. Bort,
V. Tadino, F. Bonnefoi, D. Le Bars, L. Zimmer, Nucl. Med.
Commun. 2008, 29, 920–926.
Acknowledgments
This work was supported by the European Union (EU) through
the project Radiochemistry for Molecular Imaging (project number
EU FP7-PEOPLE-2012-ITN-RADIOMI).
Dr.
Anis
Tlili
[ICBMS – UMR, Centre National de la Recherche Scientifique
(CNRS) 5246] is thanked for fruitful discussions. Frédéric Bonnefoi
and Thibaut Iecker (CERMEP - in vivo imaging) are acknowl-
edged for their technical assistance. The authors wish to thank the
Centre National de la Recherche Scientifique (CNRS) for financial
support.
[12]
[13]
a) S. Ram, R. E. Ehrenkaufer, D. M. Jewett, Appl. Radiat. Isot.
1986, 37, 391–395; b) S. Ram, L. D. Spicer, Appl. Radiat. Isot.
1989, 40, 413–416; c) S. Ram, R. E. Ehrenkaufer, L. D. Spicer,
Appl. Radiat. Isot. 1989, 40, 425–427.
a) O. Jacquet, C. Das Neves Gomes, M. Ephritikhine, T. Can-
tat, J. Am. Chem. Soc. 2012, 134, 2934–2937; b) O. Jacquet, X.
Frogneux, C. Das Neves Gomes, T. Cantat, Chem. Sci. 2013,
4, 2127–2131; c) Y. Li, I. Sorribes, T. Yan, K. Junge, M. Beller,
Angew. Chem. Int. Ed. 2013, 52, 12156–12160; Angew. Chem.
2013, 125, 12378–12382; d) Y. Li, X. Fang, K. Junge, M. Beller,
[1] a) W. Cai, Mol. Pharm. 2014, 11, 3773–3776; b) L. Zimmer, A.
Luxen, Neuroimage 2012, 61, 363–370; c) G. B. Saha, Basics of
Eur. J. Org. Chem. 2015, 6434–6438
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6437