2756
Y. Saito et al. / Bioorg. Med. Chem. Lett. 22 (2012) 2753–2756
2. (a) Gottlieb, R. A.; Nordberg, J.; Skowronski, E.; Babior, B. M. Proc. Natl. Acad. Sci.
U.S.A. 1996, 93, 654; (b) Gottlieb, R. A.; Dosanjh, A. Proc. Natl. Acad. Sci. U.S.A.
1996, 93, 3587.
3. Overly, C. C.; Lee, K. D.; Berthiaume, E.; Hollenbeck, P. J. Proc. Natl. Acad. Sci.
U.S.A. 1995, 92, 3156.
red-shift of the UV absorption suggests the formation of free amine
from the protonated anilinium ion with increasing pH. Due to the
efficient photo-induced electron transfer (PET) from the aniline
moiety to the anthracene fluorophore, almost no fluorescence
emission was observed in a neutral to basic pH region.8 The fluo-
rescence and absorption behaviors of these compounds are revers-
ible with changing pH, supporting a protonation–deprotonation
process.
Next, a preliminary study of the newly synthesized fluorescent
nucleosides in living cells was carried out by means of fluorescence
microscopy. We treated human hepatoma cell line Huh-7 with
structurally similar two nucleosides, N-methylanilino derivative
1b (pKa 3.9) and N-(tert-butyl)anilino derivative 1f (pKa 6.1), at
37 °C for 2 h. As shown in Figure 4, N-(tert-butyl)anilino derivative
1f was penetrated into cell membranes and exhibited strong green
fluorescence in the cytosol. In contrast, extremely weak fluores-
cence emission was observed when the cell was treated with N-
methylanilino derivative 1b. We observed a large difference in
fluorescence behavior between these two fluorescent nucleosides
1b and 1f, which is the indication of the capability of 1f to discrim-
inate acidic site of human hepatoma cell.
4. Hoyt, K. R.; Reynolds, I. J. J. Neurochem. 1988, 71, 1051.
5. (a) Callan, J. F.; de Silva, A. P.; McClenaghan, N. D. Chem. Commun. 2004, 2048;
(b) de Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. Chem. Commun. 1996, 2399;
(c) Cao, Y.-D.; Zheng, Q.-Y.; Chen, C.-F.; Huang, Z.-T. Tetrahedron Lett. 2003, 44,
4751; (d) Han, J.; Burgess, K. Chem. Rev. 2010, 110, 2709.
6. For reviews, see: (a) Hawkins, M. E. Cell Biochem. Biophys. 2001, 34, 257; (b)
Rist, M. J.; Marino, J. P. Curr. Org. Chem. 2002, 6, 775; (c) Okamoto, A.; Saito, Y.;
Saito, I. Photochem. Photobiol. C: Photochem. Rev. 2005, 6, 108; (d) Ranasinghe, R.
T.; Brown, T. Chem. Commun. 2005, 5487; (e) Tor, Y. ed., Tetrahedron
symposium in print, 2007, 63.; (f) Venkatesan, N. Y.; Seo, J.; Kim, B. H. Chem.
Soc. Rev. 2008, 37, 648; (g) Sinkeldam, R. W.; Greco, N. J.; Tor, Y. Chem. Rev.
2010, 110, 2579.
7. For example, see (a) Greco, N. J.; Tor, Y. J. Am. Chem. Soc. 2005, 127, 10784. and
references therein; (b) Wanninger-Weiß, C.; Wagenknecht, H.-A. Eur. J. Org.
Chem. 2008, 64.
8. (a) Bernardo, M. A.; Alves, S.; Pina, F.; Seixas de Melo, J.; Albelda, M. T.; Garcia-
Espana, E.; Llinares, J. M.; Soriano, C.; Luis, S. V. Supramol. Chem. 2001, 13, 435;
(b) Albelda, M. T.; Aguilar, J.; Alves, S.; Aucejo, R.; Lodeiro, C.; Lima, J. C.; Garcia-
Espana, E.; Pina, F.; Soriano, C. Helv. Chim. Acta 2003, 86, 3118.
9. (a) Okamoto, A.; Kanatani, K.; Saito, I. J. Am. Chem. Soc. 2004, 126, 4820; (b)
Saito, Y.; Miyauchi, Y.; Okamoto, A.; Saito, I. Chem. Commun. 2004, 1704.
10. Okano, K.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2003, 5, 4987.
11. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 2267.
12. Spectroscopic data for 1a: 1H NMR (DMSO-d6, 400 MHz) d 2.24 (ddd, J = 4.4,
6.2, 13.4 Hz, 1H), 2.33 (m, 1H), 3.69 (m, 1H), 3.77 (m, 1H), 3.87 (m, 1H), 4.36
(m, 1H), 5.34 (d, J = 4.4 Hz, 1H), 5.37 (m, 1H), 5.80 (s, 2H), 6.21 (m, 1H), 6.68 (d,
J = 8.6 Hz, 2H), 7.55 (d, J = 8.6 Hz, 2H), 7.73–7.77 (complex, 4H), 8.62-8.71
(complex, 4H), 8.74 (s, 1H), 11.9 (s, 1H); 13C NMR (DMSO-d6, 100 MHz) d 40.3,
60.7, 69.6, 83.8, 85.1, 87.7, 89.5, 95.7, 98.5, 105.7, 107.9, 113.8 (ꢁ2), 116.2 (ꢁ2),
118.7 (ꢁ2), 126.9 (ꢁ2), 127.3 (ꢁ2), 127.5 (ꢁ2), 130.7 (ꢁ2), 131.0 (ꢁ2), 133.1
(ꢁ2), 143.8, 149.5, 150.3, 161.7; HRMS (ESI) m/z 566.1691 calcd for
In conclusion, we have succeeded in the design and synthesis of
highly pH-sensitive fluorescent uridine derivatives 1a–g. In partic-
ular, N-(tert-butyl)aniline derivative 1f emitted strong fluorescence
at 470–600 nm at pH below ca.6.8 with a pKa of 6.1. The result indi-
cated that newly synthesized fluorescent nucleoside 1f can be used
for monitoring pH change under physiological conditions. These
newly synthesized pH-dependent fluorescent nucleosides can be
used as fluorescence ‘on–off’ switch for probing acidic sites in a cell.
C
33H25N3O5Na [M+Na]+, found 566.1707.
Spectroscopic data for 1f: 1H NMR (DMSO-d6, 400 MHz) d 1.37 (s, 9H), 2.24
(ddd, J = 4.4, 6.2, 13.3 Hz, 1H), 2.33 (m, 1H), 3.69 (m, 1H), 3.77 (m, 1H), 3.87 (m,
1H), 4.36 (m, 1H), 5.35 (d, J = 4.2 Hz, 1H), 5.38 (m, 1H), 6.03 (s, 1H), 6.21 (m,
1H), 6.83 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 8.8 Hz, 2H), 7.73–7.77 (complex, 4H),
8.62–8.71 (complex, 4H), 8.75 (s, 1H), 11.9 (s, 1H); 13C NMR (DMSO-d6,
100 MHz) d 29.2 (ꢁ3), 40.3, 50.3, 60.7, 69.6, 84.1, 85.0, 87.7, 89.5, 95.8, 98.5,
105.6, 107.4, 114.2 (ꢁ2), 116.3 (ꢁ2), 118.7 (ꢁ2), 126.9 (ꢁ2), 127.3 (ꢁ2), 127.5
(ꢁ2), 130.7 (ꢁ2), 131.0 (ꢁ2), 132.8 (ꢁ2), 143.8, 148.8, 149.5, 161.7; HRMS (ESI)
m/z 622.2318 calcd for C37H33N3O5Na [M+Na]+, found 622.2307.
Acknowledgment
This work was supported by a Grant-in-Aid for Scientific re-
search of MEXT, from Japanese Government.
13. (a) Henderson, L. J. Am. J. Physiol. 1908, 21, 173; (b) Hasselbalch, K. A. Biochem.
Z. 1917, 78, 112.
References and notes
14. Brown, H. C.; Braude, E. A.; Nachod, F. C. Determination of Organic Structures by
Physical Methods; Academic Press: New York, 1995.
1. Martinez-Zaguilan, R.; Chinnock, B. F.; Wald-Hopkins, S.; Bernas, M.; Way, D.;
Weinand, M.; Witte, M. H.; Gillies, R. J. Cell. Physiol. Biochem. 1996, 6, 169.