Stereoselective Synthesis of Complex Tetrahydropyrans
in CH2Cl2 (0.5 mL). After stirring at –40 °C for 14 h, the reaction National Science Foundation (NSF) MRI Program (Award ID No.
mixture was diluted with hexanes (25.0 mL), filtered through a
short pad of silica gel (hexanes/EtOAc, 3:1), and concentrated in
vacuo. The residue was purified by column chromatography (silica
gel; hexanes/EtOAc, 2:1) to afford 2,3-trans-2,6-trans-tetrahydro-
pyran 20a (25.9 mg, 90%) and 2,3-cis-2,6-cis-tetrahydropyran 21a
(2.1 mg, 7%) as colorless oils. Data for 20a: [α]2D5 = +16.0 (c = 0.92,
CHCl3). 1H NMR (500 MHz, CDCl3): δ = 9.75 (dd, J = 2.0,
2.0 Hz, 1 H), 7.26–7.37 (m, 5 H), 4.54 (s, 2 H), 4.25 (ddd, J = 7.0,
7.0, 7.0 Hz, 1 H), 4.15 (dddd, J = 5.5, 5.5, 5.5, 5.5 Hz, 1 H), 3.80
(dd, J = 6.0, 1.5 Hz, 2 H), 3.08 (ddd, J = 14.5, 11.5, 3.0 Hz, 1 H),
2.96 (ddd, J = 14.5, 11.5, 3.0 Hz, 1 H), 2.65–2.75 (m, 5 H), 2.26
(dd, J = 14.5, 5.5 Hz, 1 H), 2.00–2.07 (m, 1 H), 1.94 (dddd, J =
7.0, 7.0, 7.0, 7.0 Hz, 1 H), 1.79–1.89 (m, 1 H), 1.21 (d, J = 7.0 Hz,
3 H) ppm. 13C NMR (125 MHz, CDCl3): δ = 201.4, 138.1, 128.3,
127.6, 73.3, 70.55, 70.37, 69.6, 52.3, 47.5, 43.2, 36.5, 26.1, 25.7,
0923097) for funding mass spectrometry instrumentation.
[1]
[2]
For reviews on tetrahydropyran synthesis, see: a) K.-S. Yeung,
I. Paterson, Chem. Rev. 2005, 105, 4237–4313; b) E. Lee, Pure
Appl. Chem. 2005, 77, 2073–2081; c) M. Shindo, Top. Hetero-
cycl. Chem. 2006, 5, 179–254; d) P. A. Clarke, S. Santos, Eur.
J. Org. Chem. 2006, 2045–2053; e) I. Larrosa, P. Romea, F.
Urpí, Tetrahedron 2008, 64, 2683–2723; f) C. Olier, M. Kaafar-
ani, S. Gastaldi, M. P. Bertrand, Tetrahedron 2010, 66, 413–
445.
For examples on tetrahydropyran synthesis, see: a) M. J. Clon-
inger, L. E. Overman, J. Am. Chem. Soc. 1999, 121, 1092–1093;
b) M. Gruttadauria, P. Lo Meo, R. Noto, Tetrahedron 1999,
55, 14097–14110; c) P. Liu, E. N. Jacobsen, J. Am. Chem. Soc.
2001, 123, 10772–10773; d) S. Marumoto, J. J. Jaber, J. P. Vitale,
S. D. Rychnovsky, Org. Lett. 2002, 4, 3919–3922; e) M.-K.
Wong, N.-W. Chung, L. He, D. Yang, J. Am. Chem. Soc. 2003,
125, 158–162; f) B. S. Lucas, S. D. Burke, Org. Lett. 2003, 5,
3915–3918; g) J. S. Clark, G. Whitlock, S. Jiang, N. Onyia,
Chem. Commun. 2003, 2578–2579; h) J. Hartung, T. Gottwald,
Tetrahedron Lett. 2004, 45, 5619–5621; i) A. B. Smith III, R. J.
Fox, Org. Lett. 2004, 6, 1477–1480; j) W. J. Morris, D. W. Cus-
tar, K. A. Scheidt, Org. Lett. 2005, 7, 1113–1116; k) K.-P.
Chan, T.-P. Loh, Org. Lett. 2005, 7, 4491–4494; l) D. Alonso,
M. Pérez, G. Gómez, B. Covelo, Y. Fall, Tetrahedron 2005, 61,
2021–2026; m) B. S. Lucas, L. M. Luther, S. D. Burke, J. Org.
Chem. 2005, 70, 3757–3760; n) P. E. Floreancig, Synlett 2007,
191–203; o) K. B. Bahnck, S. D. Rychnovsky, J. Am. Chem.
Soc. 2008, 130, 13177–13181; p) L.-Q. Lu, X.-N. Xing, X.-F.
Wang, Z.-H. Ming, H.-M. Wang, W.-J. Xiao, Tetrahedron Lett.
2008, 49, 1631–1635; q) M.-A. Hiebel, B. Pelotier, P. Goekjian,
O. Piva, Eur. J. Org. Chem. 2008, 713–720; r) J. K. De Brab-
ander, B. Liu, M. Qian, Org. Lett. 2008, 10, 2533–2536; s)
B. M. Trost, A. C. Gutierrez, R. C. Livingston, Org. Lett. 2009,
11, 2539–2542; t) H. Fuwa, K. Noto, M. Sasaki, Org. Lett.
2010, 12, 1636–1639; u) L. Liu, P. E. Floreancig, Angew. Chem.
2010, 122, 3133–3136; Angew. Chem. Int. Ed. 2010, 49, 3069–
3072; v) M. Iqbal, N. Mistry, P. A. Clarke, Tetrahedron 2011,
67, 4960–4966; w) H. Fuwa, K. Mizunuma, S. Matsukida, M.
Sasaki, Tetrahedron 2011, 67, 4995–5010; x) A. Guérinot, A.
Serra-Muns, C. Bensoussan, S. Reymond, J. Cossy, Tetrahedron
2011, 67, 5024–5033; y) D. Gill, N. H. Taylor, E. J. Thomas,
Tetrahedron 2011, 67, 5034–5045; z) F. Hilli, J. M. White, M. A.
Rizzacasa, Tetrahedron 2011, 67, 5054–5068; aa) S.-S. Chua, A.
Alni, L.-T. J. Chan, M. Yamane, T.-P. Loh, Tetrahedron 2011,
67, 5079–5082.
25.2, 13.9 ppm. IR (neat): ν = 1722, 1452, 1277, 1097, 906, 738,
˜
698 cm–1. HRMS (ESI): calcd. for C19H26O3S2 [M + H]+ 367.1396;
found 367.1396. Data for 21a: [α]2D5 = –26.9 (c = 1.07, CHCl3). H
1
NMR (500 MHz, CDCl3): δ = 9.77 (dd, J = 2.0, 2.0 Hz, 1 H), 7.24–
7.36 (m, 5 H), 4.84 (ddd, J = 9.5, 4.5, 2.0 Hz, 1 H), 4.53 (AB, Δυ
= 16.5, JAB = 11.5 Hz, 2 H), 4.06–4.12 (m, 1 H), 3.48 (dd, J = 10.5,
5.5 Hz, 1 H), 3.42 (dd, J = 10.5, 4.5 Hz, 1 H), 2.66–2.90 (m, 5 H),
2.34 (ddd, J = 17.0, 4.5, 2.0 Hz, 1 H), 2.09 (ddd, J = 7.5, 7.5,
7.5 Hz, 1 H), 1.90–2.02 (m, 3 H), 1.85 (dd, J = 13.5, 11.5 Hz, 1 H),
1.11 (d, J = 7.5 Hz, 3 H) ppm. 13C NMR (125 MHz, CDCl3): δ =
201.0, 138.1, 128.3, 127.6, 73.3, 72.59, 72.56, 70.1, 53.3, 47.4, 38.3,
34.6, 26.0, 25.4, 25.2, 8.9 ppm. IR (neat): ν = 1722, 1453, 1376,
˜
1108, 1026, 738, 698 cm–1. HRMS (ESI): calcd. for C19H26O3S2 [M
+ H]+ 367.1393; found 367.1396.
Typical Procedure for the Tandem Oxidation/Oxa-Michael Reac-
tion: To a solution of diol (E)-25a (15.5 mg, 0.042 mmol) in CH2Cl2
(0.021 m, 2.0 mL) was added MnO2 (18.3 mg, 0.21 mmol). The re-
sulting mixture was stirred for 1 h at 25 °C. An addition of MnO2
(18.3 mg, 0.21 mmol) was repeated three times every 1 h. After stir-
ring for an additional 6 h, the reaction mixture was filtered through
a pad of Celite and concentrated in vacuo. The residue was purified
by column chromatography (silica gel; hexanes/EtOAc, 2:1) to af-
ford 2,3-trans-2,6-cis-tetrahydropyran 26a (12.8 mg, 83%) as a col-
orless oil. [α]2D5 = +16.4 (c = 0.17, CHCl3). 1H NMR (500 MHz,
CDCl3): δ = 9.78 (dd, J = 3.5, 1.5 Hz, 1 H), 7.26–7.40 (m, 5 H),
4.56 (s, 2 H), 4.09–4.15 (m, 2 H), 3.52 (dd, J = 10.0, 5.0 Hz, 1 H),
3.47 (dd, J = 10.5, 5.0 Hz, 1 H), 3.14 (ddd, J = 14.5, 12.5, 2.5 Hz,
1 H), 2.91 (ddd, J = 14.5, 12.0, 2.5 Hz, 1 H), 2.76 (dd, J = 14.0,
1.5 Hz, 1 H), 2.62–2.69 (m, 2 H), 2.58 (ddd, J = 16.0, 4.0, 2.0 Hz,
1 H), 2.44 (ddd, J = 15.5, 9.0, 3.5 Hz, 1 H), 2.05–2.12 (m, 1 H),
1.77–1.88 (m, 2 H), 1.69–1.76 (m, 1 H), 1.16 (d, J = 7.0 Hz, 3 H)
ppm. 13C NMR (100 MHz, CDCl3): δ = 201.6, 138.2, 128.4, 127.7,
73.4, 73.1, 72.8, 72.5, 54.3, 47.4, 45.5, 39.9, 25.68, 25.55, 25.0,
[3]
[4]
For a review on the oxa-Michael reaction, see: C. F. Nising, S.
Bräse, Chem. Soc. Rev. 2008, 37, 1218–1228.
For recent examples on the synthesis of tetrahydropyrans
through oxa-Michael reactions, see: a) T. D. Avery, D. Caiazza,
J. A. Culbert, D. K. Taylor, E. R. T. Tiekink, J. Org. Chem.
2005, 70, 8344–8351; b) M.-A. Hiebel, B. Pelotier, P. Lhoste,
O. Piva, Synlett 2008, 1202–1204; c) G. Sabitha, D. Vasud-
eva Reddy, A. Senkara Rao, J. S. Yadav, Tetrahedron Lett.
2010, 51, 4195–4198; d) C. R. Reddy, B. Srikanth, Synlett 2010,
1536–1538; e) M.-A. Hiebel, B. Pelotier, O. Piva, Tetrahedron
Lett. 2010, 51, 5091–5093; f) C. R. Reddy, N. N. Rao, Tetrahe-
dron Lett. 2010, 51, 5840–5842; g) R. W. Bates, P. Song, Synthe-
sis 2010, 2935–2942; h) M. Wohland, M. E. Maier, Synlett
2011, 1523–1526.
12.2 ppm. IR (neat): ν = 1722, 1452, 1380, 1054, 908, 736,
˜
698 cm–1. HRMS (ESI): calcd. for C19H26O3S2 [M + H]+ 367.1392;
found 367.1396.
Supporting Information (see footnote on the first page of this arti-
1
cle): Complete characterization data and copies of the H and 13C
NMR spectra.
[5]
[6]
H. Kim, Y. Park, J. Hong, Angew. Chem. 2009, 121, 7713–7717;
Angew. Chem. Int. Ed. 2009, 48, 7577–7581.
a) H. Kim, J. Hong, Org. Lett. 2010, 12, 2880–2883; b) K. Lee,
H. Kim, J. Hong, Org. Lett. 2011, 13, 2722–2725; c) S. R. By-
eon, H. Park, H. Kim, J. Hong, Org. Lett. 2011, 13, 5816–5819.
Acknowledgments
We are grateful to Duke University for funding this work, the
North Carolina Biotechnology Center (NCBC) (Grant No. 2008-
IDG-1010) for funding of NMR instrumentation, and to the
[7]
H. Park, H. Kim, J. Hong, Org. Lett. 2011, 13, 3742–3745.
Eur. J. Org. Chem. 2012, 1025–1032
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
1031