M. K. Hilinski et al. / Bioorg. Med. Chem. Lett. 22 (2012) 3244–3247
3247
important, either carbamate modification should render an analog
References and notes
suitable for in vivo evaluation.
In summary, the C300 and C400 acetates on the carbohydrate moi-
ety of SL0101 are required for both potent and specific inhibition of
RSK but we predict that they would be metabolized rapidly by
esterases in vivo, a fact which is supported by the poor biological
stability of the natural product in vitro. Thus, SL0101 is not suitable
for in vivo evaluation and analogs with improved stability are
needed. The number of suitable replacements for these acetates
that would confer greater biological stability is surprisingly limited
as a simple change from acetyl to ethyl leads to a reduction in spec-
ificity for RSK. As a solution to this problem, bioisosteric replace-
ment of the acetates by carbamates provided analogs that are
more biologically stable than SL0101 in vitro and are as specific
as SL0101 for RSK. These modifications along with others aimed
at further improving the stability and potency of SL0101 analogs
are currently being investigated in our laboratory with the goal
of identifying a RSK inhibitor that could be advanced to preclinical
testing.
1. Eisinger-Mathason, T. S.; Andrade, J.; Lannigan, D. A. Steroids 2010, 75, 191.
2. Doehn, U.; Hauge, C.; Frank, S. R.; Jensen, C. J.; Duda, K.; Nielsen, J. V.; Cohen, M.
S.; Johansen, J. V.; Winther, B. R.; Lund, L. R.; Winther, O.; Taunton, J.; Hansem,
S. H.; Frodin, M. Mol. Cell 2009, 35, 511.
3. Smolen, G. A.; Zhang, J.; Zubrowski, M. J.; Edelman, E. J.; Luo, B.; Yu, M.; Ng, L.
W.; Scherber, C. M.; Schott, B. J.; Ramaswamy, S.; Irimia, D.; Root, D. E.; Haber,
D. A. Genes Dev. 2010, 24, 2654.
4. Cho, Y. Y.; Yao, K.; Kim, H. G.; Kang, B. S.; Zheng, D.; Bode, A. M.; Dong, Z. Cancer
Res. 2007, 67, 8104.
5. Clark, D. E.; Errington, T. M.; Smith, J. A.; Frierson, H. F., Jr.; Weber, M. J.;
Lannigan, D. A. Cancer Res. 2005, 65, 3108.
6. Kang, S.; Dong, S.; Gu, T. L.; Guo, A.; Cohen, M. S.; Lonial, S.; Khoury, H. J.;
Fabbro, D.; Gilliland, D. G.; Bergsagel, P. L.; Taunton, J.; Polakiewicz, R. D.; Chen,
J. Cancer Cell 2007, 12, 201.
7. Kang, S.; Elf, S.; Lythgoe, K.; Hitosugi, T.; Taunton, J.; Zhou, W.; Xiong, L.; Wang,
D.; Muller, S.; Fan, S.; Sun, S. Y.; Marcus, A. I.; Gu, T. L.; Polakiewicz, R. D.; Chen,
Z. G.; Khuri, F. R.; Shin, D. M.; Chen, J. Clin. Invest. 2010, 120, 1165.
8. Kang, S.; Elf, S.; Dong, S.; Hitosugi, T.; Lythgoe, K.; Guo, A.; Ruan, H.; Lonial, S.;
Khoury, H. J.; Williams, I. R.; Lee, D. H.; Roesel, J. L.; Karsenty, G.; Hanauer, A.;
Taunton, J.; Boggon, T. J.; Gu, T. L.; Chen, J. Mol. Cell Biol. 2009, 29, 2105.
9. Smith, J. A.; Poteet-Smith, C. E.; Xu, Y.; Errington, T. M.; Hecht, S. M.; Lannigan,
D. A. Cancer Res. 2005, 65, 1027.
10. Bain, J.; Plater, L.; Elliott, M.; Shpiro, N.; Hastie, C. J.; McLauchlan, H.; Klevernic,
I.; Arthur, J. S.; Alessi, D. R.; Cohen, P. Biochem. J. 2007, 408, 297.
11. Maloney, D. J.; Hecht, S. M. Org. Lett. 2005, 7, 1097.
12. Smith, J. A.; Maloney, D. J.; Clark, D. E.; Xu, Y.; Hecht, S. M.; Lannigan, D. A.
Bioorg. Med. Chem. 2006, 14, 6034.
Acknowledgments
This work was supported by the Department of Defense
#W81XWH-11-1-0068 to M.K.H. and GM084386 to D.A.L.
13. Smith, J. A.; Maloney, D. J.; Hecht, S. M.; Lannigan, D. A. Bioorg. Med. Chem.
2007, 15, 5018.
14. Shan, M.; O’Doherty, G. A. Org. Lett. 2006, 8, 5149.
15. Shan, M.; O’Doherty, G. A. Org. Lett. 2010, 12, 2986.
16. Ruiz, F. X.; Porté, S.; Gallego, O.; Moro, A.; Ardèvol, A.; Del Río-Espínola, A.;
Rovira, C.; Farrés, J.; Parés, X. Biochem. J. 2011, 440, 335.
Supplementary data
17. Jin, Y.; Penning, T. M. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 263.
18. Eisinger-Mathason, T. S.; Andrade, J.; Groehler, A. L.; Clark, D. E.; Muratore-
Schroeder, T. L.; Pasic, L.; Smith, J. A.; Shabanowitz, J.; Hunt, D. F.; Macara, I. G.;
Lannigan, D. A. Mol. Cell. 2008, 31, 722.
Supplementary data (experimental procedures and compound
characterization for all new compounds) associated with this arti-