Communication
ChemComm
9, 1763. For a review on the electrophilic alkynylation of the same
group, see: J. P. Branda and J. Waser, Chem. Soc. Rev., 2012, 41, 4165.
12 (a) X. Jie, Y. Shang, P. Hu and W. Su, Angew. Chem., Int. Ed., 2013,
125, 3718; (b) For other related reactions with indoles, see: L. Yang,
L. Zhao and C.-J. Li, Chem. Commun., 2010, 46, 4184.
13 D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. L. Leazer
Jr., R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A. Wells,
A. Zaks and T. Y. Zhang, Green Chem., 2007, 9, 411.
Scheme 6 Mechanistic proposal for the reaction of sulfonylacetylenes 1
with organolithium and organomagnesium reagents.
´
´
14 (a) J. L. Garcıa Ruano, J. Aleman, L. Marzo, C. Alvarado, M. Tortosa,
´
S. Dıaz-Tendero and A. Fraile, Angew. Chem., Int. Ed., 2012, 51, 2712;
´
´
(b) J. L. Garcıa Ruano, J. Aleman, L. Marzo, C. Alvarado, M. Tortosa,
´
S. Dıaz-Tendero and A. Fraile, Chem. – Eur. J., 2012, 18, 8414.
In conclusion we have demonstrated that the anti-Michael addi-
tion of RLi or R-MgX24 to sulfonylacetylenes constitutes an efficient
methodology to obtain different aryl-heteroaryl and diheteroaryl
acetylenes under very mild conditions. The broad scope, excellent
yields, and simplicity of the experimental procedure, which does not
require transition metals, are the main features of this methodology.
The present work can be considered as a general alternative to the
Sonogashira reaction in alkynylation reactions of heterocycles with-
out using transition metals.
15 These yields were obtained starting from 0.2 mmol of 2A–2C but the
reaction can be scaled up (3Ca was obtained in 95% yield on a
2.34 mmol scale).
16 Other C–H functionalizations are not selective strategies and a
mixture of the two activated positions would be found. Therefore,
only substituted thiophenes in the 2 position (with the 20 position
free to be activated) can be used as starting materials (see e.g. ref. 12).
17 The standard reaction time for the Br–Li exchange process was
15 minutes. Longer reaction times for the Br–Li exchange gave equilibria
of 3-Li-2K and 2-Li-2K, and consequenly the corresponding mixture of
monoalkynyl derivatives was formed.
18 This was confirmed by studying deuteration reactions at ꢀ78 1C of the
Li carbaniones generated from 3Ca and 3Ka at the same temperature.
This results in the exclusive formation of the 5-D and 2-D derivatives
respectively. The reaction of thiophene with n-BuLi at ꢀ78 1C only
yielded decomposition products, presumably due to the opening of the
ring with the organolithium (see e.g. K. Chernichenko, N. Emelyanov,
I. Gridnev and V. G. Nenajdenko, Tetrahedron, 2011, 67, 6812), whereas
the reaction at 0 1C produces its 2-Li derivative (unsensitive to the
opening), which is quantitatively deuterated with ND4Cl.
Financial support from the Spanish Government (CTQ2012-
35957) is gratefully acknowledged. J. A. thanks the MICINN for a
´
‘‘Ramon y Cajal’’ contract. I. P. thanks Conacyt-Mexico for a
´
predoctoral fellowship and F. Y. thanks Conacyt-Mexico and
DGAPA-UNAM for a sabbatical fellowship. L. M. thanks the
Spanish government for a FPU fellowship.
19 It can be explained by assuming an –I effect of the alkynyl group (weaker
for longer distance) that stabilizes the lithium carbanion but reduces its
reactivity. The complete regioselectivity observed in the alkynylation reac-
tion of 3Ka indicates that this stabilization is clearly higher for C(2)–Li than
for C(5)–Li, which supports the above statement. Another possible expla-
nation of this regioselectivity would involve the formation of a mixture of
C(2)–Li and C(5)–Li derivatives of 3Ka, with the first one being the most
reactive. Nevertheless this could be discarded by the exclusive deuteration
at C-2 observed by protonation with ND4Cl (see ref. 18).
20 For materials science, see: (a) P.-L. T. Boudreault, J. W. Hennek, S. Loser,
R. Ponce Ortiz, B. J. Eckstein, A. Facchetti and T. J. Marks, Chem. Mater.,
2012, 24, 2929; (b) M. J. O’Connor, R. B. Yelle, L. N. Zakharov and M. M.
Haley, J. Org. Chem., 2008, 73, 4424. For organic synthesis, see: (c) S. Naoe,
Y. Suzuki, K. Hirano, Y. Inaba, S. Oishi, N. Fujii and H. Ohno, J. Org.
Chem., 2012, 77, 4907; (d) M. M. Hansmann, M. Rudolph, F. Rominger,
A. Stephen and K. Hashmi, Angew. Chem., Int. Ed., 2013, 52, 2593.
21 Sulfone 1i was prepared in two steps from the commercially avail-
able 3-ethynyl thiophene by reaction with sodium toluene sulfinate
and NaI in the presence of CAN, followed by reaction with K2CO3 in
refluxing acetone, according to the procedure reported by Nair et al.
(V. Nair, A. Augustine and T. D. Suja, Synthesis, 2002, 2259). Other
heteroarylsulfonyl acetylenes could not be prepared by this proce-
dure, because the starting ethynyl derivatives are not commercially
available. We have tried to prepare them, but in the isolation step we
found serious problems due to their high volatility.
Notes and references
1 Acetylene Chemistry: Chemistry, Biology and Material Science, ed.
F. Diederich, P. J. Stang and R. R. Tykwinski, Wiley-VCH, Weinheim, 2005.
2 F. Herrmann, R. Hamoud, F. Sporer, A. Tahrani and M. Wink, Planta
Med., 2011, 77, 1905.
3 M. Packiarajan, M. Grenon, S. Zorn, A. T. Hopper, A. D. White,
G. Chandrasena, X. Pu, R. M. Brodbeck and A. J. Robichaud, J. Med.
Chem., 2013, 23, 4037.
4 C. Haubmann, H. Hu¨bner and P. Gmeiner, J. Med. Chem. Lett., 1999,
9, 3143.
5 M. J. Costanzo, S. C. Yabut, H.-C. Zhang, K. B. White, L. de Garavilla,
Y. Wang, L. K. Minor, B. A. Tounge, A. N. Barnakov, F. Lewandowski,
C. Milligan, J. C. Spurlino, W. M. Abraham, V. Boswell-Smith,
C. P. Pagec and B. E. Maryanoff, J. Med. Chem. Lett., 2008, 18, 2114.
6 A. Hopper, A. Sams, M. Graven, K. Gitte, M. Packiarajan and
M. Grenon, US Pat. Appl. Publ., US 20110092475 A1 20110421, 2011.
7 D. Bonafoux, S. Bonar, L. Christine, M. Clare, A. Donnelly, J. Guzova,
N. Kishore, P. Lennon, A. Libby, S. Mathialagan, W. McGhee,
S. Rouw, C. Sommers, M. Tollefson, C. Tripp, R. Weier, S. Wolfson
and Y. Min, Bioorg. Med. Chem. Lett., 2005, 15, 2870.
8 (a) R. Romagnoli, P. G. Baraldi, O. Cruz-Lopez, M. Tolomeo, A. Di
Cristina, R. M. Pipitone, S. Grimaudo, J. Balzarini, A. Brancale and
E. Hamel, Bioorg. Med. Chem. Lett., 2011, 21, 2746; (b) G. Liang,
S. Aldous, G. Merriman, J. Levell, J. Pribish, J. Cairns, X. Chen,
S. Maignan, M. Mathieu, J. Tsay, K. Sides, S. Rebello, B. Whitely,
I. Morize and H. W. Pauls, Bioorg. Med. Chem. Lett., 2012, 22, 1049.
9 For recent reviews, see: (a) H. Doucet and J.-C. Hierso, Angew. Chem.,
´
Int. Ed., 2007, 46, 834; (b) R. Chinchilla and C. Najera, Chem. Soc. Rev.,
2011, 40, 5084.
10 (a) S. H. Kim and S. Chang, Org. Lett., 2010, 12, 1868; (b) A. S. Dudnik and
V. Gevorgyan, Angew. Chem., Int. Ed., 2010, 49, 2096; (c) A. S. Dudnik and
V. Gevorgyan, Eur. J. Org. Chem., 2010, 6495; (d) I. V. Seregin, V. Ryabova
and V. Gevorgyan, J. Am. Chem. Soc., 2007, 129, 7742; (e) Y. Gu and X.-M.
22 (a) P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp,
T. Korn, I. Sapountzis and V. A. Vu, Angew. Chem., Int. Ed., 2003, 42, 4302;
(b) H. Ila, O. Baron, A. J. Wagner and P. Knochel, Chem. Commun., 2006,
583. For a precedent of the alkylation of Grignards with alkynyl sulfones,
see: R. L. Smorada and W. E. Truce, J. Org. Chem., 1979, 44, 3444.
Wang, Tetrahedron Lett., 2009, 50, 763; ( f ) N. Matsuyama, K. Hirano, 23 The radical character suggested for the a-addition would not explain
`
´
the lower reactivity of the Grignard derivatives (see: J. L. Garcıa Ruano,
´
J. Aleman, A. Parra and L. Marzo, Eur. J. Org. Chem., 2014, 1577).
T. Satoh and M. Miura, Org. Lett., 2009, 11, 4156; (g) F. Besselievre and
S. Piguel, Angew. Chem., Int. Ed., 2009, 48, 9553.
11 (a) J. P. Brand, J. Charpentier and J. Waser, Angew. Chem., Int. Ed., 24 We are currently working on a full article concerning the use of the
2009, 48, 9346; (b) J. P. Branda and J. Waser, Angew. Chem., Int. Ed.,
2010, 49, 7304; (c) Y. Li and J. Waser, Beilstein J. Org. Chem., 2013,
Grignard reagents in alkynylation reactions with sulfonyl acetylenes,
which will be published in the near future.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2014