Organometallics
Article
Stephan, D. W. J. Am. Chem. Soc. 2008, 130, 12632−12633. (c) Ullrich,
M.; Lough, A. J.; Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 52−53.
(4) Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.;
Bertrand, G. Science 2007, 316, 439−441.
for a second molecule of NH2NMe2 to approach INT-1 (3);
thus, INT-2 is less stable relative to INT-1 by ca. 9 kcal mol−1.
The activation energy for the formation of the theoretical
−1
product, (ArMe )2Ge(H)N(H)NMe2, is only 3.1 kcal mol
6
(5) Power, P. P. Nature 2010, 463, 171−177.
higher than that for 1 (26.1 kcal mol−1), but the transition state
is 21.9 kcal mol−1 higher in energy than the fully dissociated
starting materials, whereas in 1 the energy difference is just 8.3
kcal mol−1 higher. These differences may be rationalized in
terms of the increased steric strain of the −NMe2 end of the
bound hydrazine decreasing the dissociation energy of the Ge−
N dative bond and preventing subsequent hydrogen bonding
with the second molecule of hydrazine. Thus, there is a steep
rise in energy of the key transition state (TS-2) with respect to
(6) (a) Caputo, C. A.; Zhu, Z. L.; Brown, Z. D.; Fettinger, J. C.;
Power, P. P. Chem. Commun. 2011, 47, 7506−7508. (b) Zhu, Z. L.;
Wang, X. P.; Olmstead, M. M.; Power, P.P.. Angew. Chem., Int. Ed.
2009, 48, 2027−2030. (c) Peng, Y.; Ellis, B. D.; Wang, X. P.; Fettinger,
J. C.; Power, P. P. Science 2009, 325, 1668−1670. (d) McCahill, J. S. J.;
Welch, G. C.; Stephan, D. W. Angew. Chem., Int. Ed. 2007, 46, 4968−
4971.
(7) (a) Khan, S.; Michel, R.; Sen, S. S.; Roesky, H. W.; Stalke, D.
Angew. Chem., Int. Ed. 2011, 50, 11786−11789. (b) Masuda, J. D.;
Schoeller, W. W.; Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. 2007,
129, 14180−14181. (c) Masuda, J. D.; Schoeller, W. W.; Donnadieu,
B.; Bertrand, G. Angew. Chem., Int. Ed. 2007, 46, 7052−7055.
(d) Xiong, Y.; Yao, S.; Brym, M.; Driess, M. Angew. Chem., Int. Ed.
2007, 46, 4511−4513.
Ge(ArMe )2 and free NH2NMe2. This inhibits the N−H bond
6
activation of N,N-dimethylhydrazine, and the adduct 3 is the
only product isolated.
In conclusion, we have prepared the first Ge(IV) hydrazides
by facile N−H bond activation of hydrazine and methylhy-
(8) (a) Momming, C. M.; Otten, E.; Kehr, G.; Frohlich, R.; Grimme,
̈
̈
drazine by the diarylgermylene Ge(ArMe )2. DFT calculations
6
S.; Stephan, D. W. Angew. Chem., Int. Ed. 2009, 48, 6643−6646.
(b) Dickie, D. A.; Parkes, M. V.; Kemp, R. A. Angew. Chem., Int. Ed.
2008, 47, 9955−9957.
indicate that these reactions proceed with closely related
intermediates and transition states in comparison to analogous
reactions between germylenes and ammonia. The intermolec-
ular N−H bond activation is dependent upon auxiliary
hydrogen bonding between a germylene−hydrazine adduct
intermediate (Figure 2, INT-1) with a second molecule of
hydrazine (Figure 2, INT-2). This auxiliary interaction is
inhibited when the germanium species is treated with N,N-
dimethylhydrazine, and only the σ adduct 3 was formed. The
inhibition of N−H bond activation, in this case, was calculated
to be largely caused by the increased steric bulk of the terminal
methyl groups of the hydrazine ligand preventing the close
association, i.e. hydrogen bonding, of a second molecule of
NH2NMe2 necessary for intermolecular proton transfer.
(9) (a) Zhu, Z. L.; Wang, X. P.; Peng, Y.; Lei, H.; Fettinger, J. C.;
Power, P. P. Angew. Chem., Int. Ed. 2009, 48, 2031−2034. (b) Peng, Y.;
Ellis, B. D.; Wang, X.; Power, P. P. J. Am. Chem. Soc. 2008, 130,
12268−12269.
(10) Peng, Y.; Guo, J. D.; Ellis, B. D.; Zhu, Z. L.; Fettinger, J. C.;
Power, P. P. J. Am. Chem. Soc. 2009, 131, 16272−16282.
(11) (a) Mazumder, B.; Hector, A. L. J. Mater. Chem. 2009, 19,
4673−4686. (b) Neumayer, D. A.; Ekerdt, J. G. Chem. Mater. 1996, 8,
9−25.
(12) (a) Zhao, Z.; Goldman, A. S.; Hartwig, J. F. Science 2005, 307,
1080−1082. (b) Nakajima, Y.; Kameo, H.; Suzuki, H. Angew. Chem.
2006, 118, 964−966. (c) Nakajima, Y.; Kameo, H.; Suzuki, H. Angew.
Chem., Int. Ed. 2006, 45, 950−952.
(13) (a) Hugle, T.; Kuhnel, M. F.; Lentz, D. J. Am. Chem. Soc. 2009,
̈
̈
ASSOCIATED CONTENT
* Supporting Information
■
131, 7444−7446. (b) Vinh-Son, N.; Swinnen, S.; Matus, M. H.;
Nguyen, M. T.; Dixon, D. A. Phys. Chem. Chem. Phys. 2009, 11, 6339−
6344. (c) Matus, M. H.; Arduengo, A. J., III; Dixon., D. A. J. Phys.
Chem. A 2006, 110, 10116−10121.
S
Text and figures giving synthesis details and characterization
data for 1−3, tables giving crystallographic data and details of
DFT calculations and atom coordinates, and CIF files giving
crystal data for 1−3. This material is available free of charge via
(14) Schirmann, J. P.; Bourdauducq, P. Ullmann’s Encyclopedia of
Industrial Chemistry; VCH: Weinheim, Germany, 2001; Vol. 18, pp
79−96.
(15) (a) Barney, B. M.; Yang, T. C.; Igarashi, R. Y.; Dos Santos, P. C.;
Laryukhin, M.; Lee, H. I.; Hoffman, B. M.; Dean, D. R.; Seefeldt, L. C.
J. Am. Chem. Soc. 2005, 127, 14960−14961. (b) Thorneley, R. N. F.;
Eady, R. E.; Lowe, D. J. Nature 1978, 272, 557−558.
(16) For a review on the use of hydrazines for the synthesis of
inorganic heterocycles, see: Engelhardt, U. Coord. Chem. Rev. 2005,
235, 53−91.
AUTHOR INFORMATION
Notes
The authors declare no competing financial interest.
■
ACKNOWLEDGMENTS
■
(17) For a recent review of group 13 metal−hydrazine cage
compounds, see: Uhl, W.; Layh, M.; Rezaeirad, B. Inorg. Chem.
2011, 50, 12275−12283.
We are grateful to the U.S. Department of Energy Office of
Basic Energy Sciences (DE-FG02-07ER46475) for financial
support. This work was also financially supported by Grants-in-
Aid for Scientific Research on Priority Area and Next
Generation Super Computing Project (Nanoscience Program)
from the Ministry of Education, Science, Sports, and Culture of
Japan.
(18) (a) Johnson, A. L.; Hollingsworth, N.; Kingsley, A.; Kociok-
Kohn, G.; Molloy, K. C. Organometallics 2009, 28, 2650−2653.
̈
(b) Jana, S.; Frohlich, R.; Mitzel, N. W. Eur. J. Inorg. Chem. 2006,
̈
3936−3942. (c) Sachdev, H.. Eur. J. Inorg. Chem. 2002, 2681−2685.
(19) Uhl, W.; Rezaeirad, B.; Layh, M.; Hagemeier, E.; Wurthwein, E.
̈
U.; Ghavtadze, N.; Kuzu, I. Chem. Eur. J. 2010, 16, 12195−12198.
(20) Jana, A.; Roesky, H. W.; Schulzke, C.; Samuel, P. P.
Organometallics 2009, 28, 6574−6577.
REFERENCES
■
(1) (a) Power, P. P. Acc. Chem. Res. 2011, 44, 627−637. (b) Martin,
D.; Soleilhavoup, M.; Bertrand, G. Chem. Sci. 2010, 2, 389−399.
(c) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46−76.
(2) Spikes, G. H.; Fettinger, J. C.; Power, P. P. J. Am. Chem. Soc.
2005, 127, 12232−12233.
(3) (a) Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W.
Science 2006, 314, 1124−1126. (b) Geier, S. J.; Gilbert, T. M.;
(21) Jana, A.; Roesky, H. W.; Schulzke, C.; Samuel, P. P.; Doring, A.
̈
Inorg. Chem. 2010, 49, 5554−5559.
(22) Simons, R. S.; Pu, L. H.; Olmstead, M. M.; Power, P. P.
Organometallics 1997, 16, 1920.
(23) Patnaik, P. Handbook of Inorganic Chemicals; McGraw-Hill: New
York, 2002; pp 342−348.
3771
dx.doi.org/10.1021/om300271c | Organometallics 2012, 31, 3768−3772