Journal of the American Chemical Society
Page 4 of 5
such as pentane.16 Correspondingly, we propose that chiral
11(16), 3670-3673.
1
2
3
4
5
6
7
8
6) For representative auxiliary-based approaches to chiral spi-
phosphoric acids act as bi-functional catalysts that promote the
reaction through the intermediacy of the transition states simi-
lar to A and B (cf. Figure 2).
roketals refer to following: (a) Iwata, C.; Hattori, K.; Uchida,
S.; Imanishi, T. Tetrahedron Lett. 1984, 25(28), 2995-2998.
(b) Iwata, C.; Fujita, M.; Hattori, K.; Uchida, S.; Imanishi, T.
Tetrahedron Lett. 1985, 26(18), 2221-2224. (c) Uchiyama,
M.; Oka, M.; Harai, S.; Ohta, A. Tetrahedron Lett. 2001,
42(10), 1931-1934. (d) Wu, K.-L.; Wilkinson, S.; Reich, N.
O.; Pettus, T. R. R. Org. Lett. 2007, 9(26), 5537-5540.
7) (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew.
Chem. Int. Ed. 2004, 43, 1566-1568. (b) Uraguchi, D.; Tera-
da, M. J. Am. Chem. Soc. 2004, 126, 5356-5357.
8) For the example of chiral thiourea-catalyzed additions to
oxocarbenium ions refer to the following: (a) Kotke, M.;
Schreiner, P. R. Tetrahedron 2006, 62, 434-439. (b) Kotke,
M.; Schreiner, P. R. Synthesis 2007, 5, 779-790; (c) Reis-
man, S. E.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc.
2008, 130, 7198-7199.
9) (a) Rowland, G. B.; Zhang, H.; Rowldand, E. B.; Chennama-
dhavuni, S.; Wang, Y.; Antilla, J. C. J. Am. Chem. Soc. 2005,
127, 15696-15697. (b) Liang, Y.; Rowland, E. B.; Rowland,
G. B.; Perman, J. A.; Antilla, J. C. Chem. Commun. 2007,
4477-4479. (c) Cheng, X.; Vellalath, S.; Goddard, R.; List,
B. J. Am. Chem. Soc. 2008, 130, 15786-15787. (d) Li, G.;
Fronczek, F. R.; Antilla, J. C. J. Am. Chem. Soc. 2008, 130,
12216-12217. (e) Rueping, M.; Antonchick, A. P.; Sugiono,
E.; Grenader, K. Angew. Chem. Int. Ed. 2009, 48, 908-910.
(f) Coric, I.; Vellalath, S.; List, B. J. Am. Chem. Soc. 2010,
132, 8536-8537. (g) Coric, I.; Muller, S.; List, B. J. Am.
Chem. Soc. 2010 132, 17370-17373. (h) Ingle, G. K.;
Mormino, M. G.; Wojtas, L.; Antilla, J. C. Org. Lett. 2011,
13(18), 4822-4825.
10) (a) Pothier, N.; Goldstein, S.; Deslongchamps, P. Helv.
Chim. Acta 1992, 75, 604-620. For a review of cycloisomer-
ization reactions refer to: (b) Trost, B. M.; Krische, M. J.
Synlett 1998, 1.
11) The synthetic procedures for the preparation of 1a–1g and
4a–4f are provided in the supporting information.
12) Substrates 3a-3g and 5a-5f may undergo isomerization dur-
ing the purification by column chromatography. However,
the addition of triethylamine (1-2 v/v %) to the eluent almost
completely suppresses the epimerization.
13) Significant background spiroketalization rate complicated the
preparation and purification of 1h and precluded unambigu-
ous evaluation of this and related substrates.
In summary, this communication describes the chiral cata-
lyst-controlled enantioselective and diastereoselective spiro-
ketalizations leading to non-thermodynamic spiroketals.
BINOL-derived chiral phosphoric acids have served as effec-
tive catalysts for the highly selective cyclizations of various
achiral and chiral cyclic enol ethers. Our method allows con-
trolling the facial selectivity of addition to D-glucal deriva-
tives 4a-4e, and further studies of this transformation and
similar processes are currently underway.17
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Supporting Information Available.
Experimental procedures, 1H and 13C NMR spectra, and X-ray
data for 3b and 5a are available free of charge via the Internet
Corresponding Author
* nagorny@umich.edu
Funding Sources and Acknowledgement
PN acknowledges the University of Michigan and Robert A.
Gregg for financial support. We thank Prof. Adam Matzger,
Dr. Saikat Roy, Dr. Jeff Kampf and Kira Landenberger for
their help with the X-ray crystallographic analysis of 3b and
5a. We acknowledge funding from NSF grant CHE-0840456
for X-ray instrumentation.
REFERENCES
1) (a) Perron, F.; Albizati, K. F. Chem. Rev. 1989, 89, 1616-
1661. (b) Mitsuhashi, S.; Shima, H.; Kawamura, T.; Kikuchi,
K.; Oikawa, M.; Ichihara, A.; Oikawa, H. Bioorg. Med.
Chem. Lett. 1999, 9, 2007-2012. (c) Uckun, F. M.; Mao, C.;
Vassilev, A. O.; Huang, H.; Jan, S.-T. Bioorg. Med. Chem.
Lett. 2000, 10, 541-545. (d) Huang, H.; Mao, C.; Jan, S.-T.;
Uckun, F. M. Tetrahedron Lett. 2000, 41, 1699-1702.
2) (a) Boivin, T. L. B. Tetrahedron 1987, 43, 3309-3362. (b)
Mead, K. T.; Brewer, B. N. Curr. Org. Chem. 2003, 7, 227-
256. (c) Raju, B. R.; Saikia, A. K. Molecules 2008, 13, 1942-
2038. (d) Sperry, J.; Liu, Y.-C.; Brimble, M. A. Org. Biomol.
Chem. 2010, 8, 29-38.
3) (a) Aho, J. E.; Pihko, P. M.; Rissa, T. K. Chem. Rev. 2005,
105, 4406-4440. (b) Favre, S.; Vogel, P.; Gerber-Lemaire, S.
Molecules 2008, 13, 2570-2600. (c) Sous, M. E.; Ganame,
D.; Zanatta, S.; Rizzacasa, M. A. ARKIVOC 2006, vii, 105-
119.
4) (a) Haag, R.; Leach, A. G.; Ley, S. V.; Nettekoven, M.;
Schnaubelt, J. Synth. Commun. 2001, 31, 2965-2977. (b)
Kulkarni, B. A.; Roth, G. P.; Lobkovsky, E.; Porco, J. A., Jr.
J. Comb. Chem. 2002, 4, 56-72. (c) Barun, O.; Sommer, S.;
Waldmann, H. Angew. Chem., Int. Ed. 2004, 43, 3195-3199.
5) For representative approaches to kinetic spiroketals refer to
the following: (a) Pihko, P. M.; Aho, J. E. Org. Lett. 2004,
6(21), 3849-3852. (b) Takaoka, L. R.; Buckmelter, A. J.;
LaCruz, T. E.; Rychnovsky, S. D. J. Am. Chem. Soc. 2005,
127, 528-529. (c) LaCruz, T. E.; Rychnovsky, S. D. Org.
Lett. 2005, 7(9), 1873-1875. (d) Potuzak, J. S.; Moilanen, S.
B.; Tan, D. S. J. Am. Chem. Soc. 2005, 127, 13796-13797.
(e) Moilanen, S. B.; Potuzak, J. S.; Tan, D. S. J. Am. Chem.
Soc. 2006, 128, 1792-1793. (f) Vellucci, D.; Rychnovsky, S.
D. Org. Lett. 2007, 9(4), 711-714. (g) Castagnolo, D.; Breu-
er, I.; Pihko, P. M. J. Org. Chem. 2007, 72(26), 10081-
10087. (h) Liu, G.; Wurst, J. M.; Tan, D. S. Org. Lett. 2009,
14) Cyclization of a triisopropylsilyl (TIPS)-containing derivative
proceeded at significantly lower rate, and resulted in only
trace quantities of the spiroketal product.
15) The exposure of pure 5a to (PhO)2PO2H (10 mol%) in pen-
tane for 2 h provides ~1.6:1 ratio of 5a:6a. The reaction
of pure 5f under the identical conditions results in ~10:1
ratio of 5f:6f.
16) For the examples of “preassociation” mechanism, in which
the nucleophiles are proposed to stabilize the development of
oxocarbenium ions in the transition state, refer to the follow-
ing: (a) Young, P. R.; Jencks, W. P. J. Am. Chem. Soc. 1977,
99, 8238-8248. (b) Wurst, J. M.; Liu, G.; Tan, D. S. J. Am.
Chem. Soc. 2011, 133, 7916-7925.
17) A related report focused on asymmetric spiroketalization
catalyzed by confined BrØnsted acids was disclosed during
the preparation of this manuscript: Coric, I.; List, B. Nature
2012, 483, 315-319.
ACS Paragon Plus Environment