T. Bura and R. Ziessel, Chem.–Eur. J., 2010, 16, 8832;
(c) F. Camerel, G. Ulrich, P. Retailleau and R. Ziessel, Angew.
Chem., Int. Ed., 2008, 47, 8876; (d) W. Y. Lin, L. Yuan, Z. M. Cao,
Y. M. Feng and J. Z. Song, Angew. Chem., Int. Ed., 2010, 49, 375;
(e) R. W. Wagner and J. S. Lindsey, J. Am. Chem. Soc., 1994,
116, 9759; (f) C. Thivierge, J. Y. Han, R. M. Jenkins and
K. Burgess, J. Org. Chem., 2011, 76, 5219.
2 (a) Y. Ueno, J. Jose, A. Loudet, C. Perez-Bolıvar, P. Anzenbacher,
´ ´
Jr. and K. Burgess, J. Am. Chem. Soc., 2011, 133, 51; (b) G. S. Jiao,
T. G. Kim, M. R. Topp and K. Burgess, Org. Lett., 2004, 6, 1701;
(c) L. X. Wu, A. Loudet, R. Barhoumi, R. C. Burghardt and
K. Burgess, J. Am. Chem. Soc., 2009, 131, 9156; (d) S. Atilgan,
T. Ozdemir and E. U. Akkaya, Org. Lett., 2010, 12, 4792;
(e) R. Ziessel and A. Harriman, Chem. Commun., 2011, 47, 611;
(f) Y. Xiao, D. K. Zhang, X. H. Qian, A. Costela, I. Garcia-
Moreno, V. Martin, M. E. Perez-Ojeda, J. Banuelos, L. Gartzia
and I. L. Arbeloa, Chem. Commun., 2011, 47, 11513.
Fig. 3 Changes in the fluorescence spectrum of 2 (10 mM in CH3OH/
H2O, 4/1) (left) and 1 (10 mM in THF) (right) as the Fe3+ concen-
tration is increased.
3 (a) E. J. Merino and K. M. Weeks, J. Am. Chem. Soc., 2005,
127, 12766; (b) C. Trieflinger, K. Rurack and J. Daub, Angew.
Chem., Int. Ed., 2005, 44, 2288; (c) R. Bandichhor, A. D. Petrescu,
A. Vespa, A. B. Kier, F. Schroeder and K. Burgess, J. Am. Chem.
Soc., 2006, 128, 10688; (d) T. L. Arbeloa, F. L. Arbeloa,
I. L. Arbeloa, I. Garcia-Moreno, A. Costela, R. Sastre and
F. Amat-Guerri, Chem. Phys. Lett., 1999, 299, 315.
¨
4 (a) Z. Shen, H. ROhr, K. Rurack, H. Uno, M. Spieles, B. Schulz,
G. Reck and N. Ono, Chem.–Eur. J., 2004, 10, 4853; (b) A. Loudet
and K. Burgess, Chem. Rev., 2007, 107, 4891; (c) J. Han and
K. Burgess, Chem. Rev., 2010, 110, 2709; (d) G. Ulrich, R. Ziessel
and A. Harriman, Angew. Chem., Int. Ed., 2008, 47, 1184;
(e) K. M. Kadish, K. M. Smith, R. Guiland, The handbook of
porphyrin science, 2010, vol. 8, p. 1; (f) T. Bura, P. Retailleau,
G. Ulrich and R. Ziessel, J. Org. Chem., 2011, 76, 1109.
5 (a) R. Bandichhor, A. D. Petrescu, A. Vespa, A. B. Kier,
F. Schroeder and K. Burgess, J. Am. Chem. Soc., 2006, 128, 10688;
(b) P. W. Du and S. J. Lippard, Inorg. Chem., 2010, 49, 10753.
6 (a) H. Z. Liu, J. Mack, Q. L. Guo, H. Lu, N. Kobayashi and
Z. Shen, Chem. Commun., 2011, 47, 12092; (b) J. E. Raymond,
A. Bhaskar, T. Goodson, III, N. Makiuchi, K. Ogawa and
Y. Kobuke, J. Am. Chem. Soc., 2008, 130, 17212; (c) L. Q. Xiong,
Z. J. Chen, Q. W. Tian, T. Y. Cao, C. J. Xu and F. Y. Li, Anal.
Chem., 2009, 81, 8687; (d) M. Kumar, N. Kumar, V. Bhalla,
H. Singh, P. R. Sharma and T. Kaur, Org. Lett., 2011, 13, 1422.
7 (a) F. R. Li, S. I. Yang, Y. Z. Ciringh, J. Seth, C. H. Martin,
D. L. Singh, D. Kim, R. R. Birge, D. F. Bocian, D. Holten and
J. S. Lindsey, J. Am. Chem. Soc., 1998, 120, 10001; (b) R. W. Wagner
and J. S. Lindsey, J. Am. Chem. Soc., 1994, 116, 9759.
8 (a) M. Kumar, N. Kumar, V. Bhalla, H. Singh, P. R. Sharma and
T. Kaur, Org. Lett., 2011, 13, 1422; (b) V. Bhalla, Roopa, M. Kumar,
P. R. Sharma and T. Kaur, Inorg. Chem., 2012, 51, 2150.
9 (a) H. Lu, Z. L. Xue, J. Mack, Z. Shen, X. Z. You and N. Kobayashi,
Chem. Commun., 2010, 46, 3565; (b) O. Buyukcakir, O. A. Bozdemir,
S. Kolemen, S. Erbas and E. U. Akkaya, Org. Lett., 2009, 11, 4644;
(c) H. Lu, L. Q. Xiong, H. Z. Liu and Z. Shen, Org. Biomol. Chem.,
2009, 7, 2554.
10 (a) R. Bandichhor, C. Thivierge, N. S. P. Bhuvanesh and
K. Burgess, Acta Crystallogr., Sect. E, 2006, 62, 4310;
(b) D. C. Wang, H. Y. Wang, S. Gao, T. Y. Zhang and X. Peng,
Acta Crystallogr., Sect. E, 2007, 63, 2238.
11 Y. Zhao, Y. Zhang, X. Lv, Y. L. Liu, M. L. Chen, P. Wang, J. Liu
and W. Guo, J. Mater. Chem., 2011, 21, 13168.
12 (a) G.-S. Jiao, A. Loudet, H. B. Lee, S. Kalinin, L. B.-A.
Johanssonb and K. Burgess, Tetrahedron, 2003, 59, 3109;
(b) M. D. Yilmaz, O. A. Bozdemir and E. U. Akkaya, Org. Lett.,
2006, 8, 2871.
13 (a) Y. H. Yu, A. B. Descalzo, Z. Shen, Q. Liu, Y. W. Wang,
M. Spieles, Y. Z. Li, K. Rurack and X. Z. You, Chem.–Asian J.,
2006, 1, 176; (b) R. Hu, E. Lager, A. Aguilar and J. Z. Liu, J. Phys.
Chem. C, 2009, 113, 36.
14 (a) P. Li, L. B. Fang, H. Zhou, W. Zhang, X. Wang, N. Li,
H. B. Zhong and B. Tang, Chem.–Eur. J., 2011, 17, 10520;
(b) S. X. Wang, X. M. Meng and M. Z. Zhu, Tetrahedron Lett.,
2011, 52, 2840; (c) L. Z. Zhang, J. Y. Wang, J. L. Fan, K. X. Guo
and X. J. Peng, Bioorg. Med. Chem. Lett., 2011, 21, 5413;
(d) S. Smanmoo, W. Nasomphan and P. Tangboriboonrat, Inorg.
Chem. Commun., 2011, 14, 351.
Fig. 4 Confocal fluorescence and bright field images of MCF-7 cells.
(a) Cells incubated with 10 mM of 2 for 30 min at 37 1C upon excitation
at 405 nm and (c) upon excitation at 488 nm. (e) Cells supplemented
with 50 mM of Fe3+ in the growth media for 1 h at 37 1C upon
excitation at 405 nm. (g) Cells supplemented with 50 mM of Fe3+ in
the growth media for 1 h at 37 1C upon excitation at 488 nm. (b), (d),
(f), and (h) Bright field images of cells.
be observed either excited at 405 nm or at 488 nm (Fig. 4a and c).
Upon supplementing cells with 50 mM of Fe3+ in the growth
medium for 1 h at 37 1C, microscope images showed only weak
intracellular fluorescence when excited at 405 nm (Fig. 4e), while
the emission could still be observed when excited at 488 nm
(Fig. 4g). Bright field measurements with both Fe3+ and 2 after
treatment confirmed that the cells are viable throughout the
imaging experiments (Fig. 4b, d, f, h). These results indicate
that 2 can be used as an effective intracellular Fe3+ imaging
agent. Due to the limit of equipment detection wavelength, we
could not obtain cell imaging for 1.
In summary, large Stokes’ shift and strong emission could
be successfully achieved via through-bond energy transfer in
2-(thiophen-2-yl)quinoline appended BODIPY cassettes. That
combined with the selective detection of Fe3+ based-on the
quenching of excitation energy transfer from the donor group
could provide considerable scope for developing chemosensors
based on the TBET cassettes containing BODIPY fluorophores.
In addition, 2 can be used as a fluorescence turn-off chemosensor
for Fe3+ in MCF-7 cells indicating its potential application for
studying the effect of Fe3+ in biological systems.
Financial support was provided by the National Natural
Science Foundation of China (No. 20971066 and 21021062)
and the Major State Basic Research Development Program of
China (No. 2011CB808704).
Notes and references
1 (a) G. S. Jiao, L. H. Thoresen and K. Burgess, J. Am. Chem. Soc.,
2003, 125, 14668; (b) F. Puntoriero, F. Nastasi, S. Campagna,
c
4602 Chem. Commun., 2012, 48, 4600–4602
This journal is The Royal Society of Chemistry 2012