ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Efficient Synthesis of γ-Keto Sulfones by
NHC-Catalyzed Intermolecular Stetter
Reaction
Anup Bhunia, Santhivardhana Reddy Yetra, Sachin Suresh Bhojgude, and
Akkattu T. Biju*
Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL),
Dr. Homi Bhabha Road, Pune -411008, India
Received April 20, 2012
ABSTRACT
The N-heterocyclic carbene-catalyzed intermolecular Stetter reaction of aldehydes with R,β-unsaturated sulfones allows the atom-economic and
selective formation of γ-keto sulfones in good yields. Key to the success of this unique transition-metal-free carbonÀcarbon bond-forming
reaction is the right choice of the NHC precursor and base. The reaction tolerates a broad range of different aldehydes.
The Stetter reaction, the nucleophilic heterocyclic
carbene (NHC)-organocatalyzed umpolung of aldehydes
followed by their reaction with Michael acceptors, consti-
tutes a highly valuable and widely used catalytic protocol
for the synthesis of 1,4-bifunctional compounds such as
1,4-diketones, 4-ketonitriles, and 4-ketoesters, thusleading
to an unnatural functional group distance, which is diffi-
cult to realize using traditional methods.1,2 These reactions
proceed via the formation of nucleophilic acyl anion
intermediates, which can react with various activated,
polarized,3 and even electron neutral4 CÀC double bonds.
Intriguingly, however, whereas the NHC-catalyzed gen-
eration of the Breslow intermediate (A)5 and its subsequent
interception with a variety of Michael acceptors are well
documented (Scheme 1, eq 1),3 the analogous reaction
with R,β-unsaturated sulfones as electrophiles is extremely
rare, presumably due to the formation of undesired side
(1) (a) Stetter, H.; Schreckenberg, M. Angew. Chem., Int. Ed. Engl.
1973, 12, 81. (b) Stetter, H. Angew. Chem., Int. Ed. Engl. 1976, 15, 639. (c)
Stetter, H.; Kuhlmann, H. Org. React. 1991, 40, 407.
(2) For recent reviews on NHC-organocatalysis, see: (a) Bugaut, X.;
Glorius, F. Chem. Soc. Rev. 2012, 41, 3511. (b) Grossmann, A.; Enders,
D. Angew. Chem., Int. Ed. 2012, 51, 314. (c) Nair, V.; Menon, R. S.; Biju,
A. T.; Sinu, C. R.; Paul, R. R.; Jose, A.; Sreekumar, V. Chem. Soc. Rev.
2011, 40, 5336. (d) Biju, A. T.; Kuhl, N.; Glorius, F. Acc. Chem. Res.
2011, 44, 1182. (e) Hirano, K.; Piel, I.; Glorius, F. Chem. Lett. 2011, 40,
786. (f) Chiang, P.-C.; Bode, J. W. RSC Catalysis Series; Royal Society of
Chemistry: Cambridge, 2010; p 339. (g) Moore, J. L.; Rovis, T. Top. Curr.
Chem. 2009, 291, 77. (h) Phillips, E. M.; Chan, A.; Scheidt, K. A.
Aldrichimica Acta 2009, 42, 55. (i) Enders, D.; Niemeier, O.; Henseler, A.
ꢀ
Chem. Rev. 2007, 107, 5606. (j) Marion, N.; Dıez-Gonzalez, S.; Nolan,
S. P. Angew. Chem., Int. Ed. 2007, 46, 2988.
(3) For reviews, see: (a) Read de Alaniz, J.; Rovis, T. Synlett 2009,
1189. (b) Rovis, T. Chem. Lett. 2008, 37, 2. (c) Christmann, M. Angew.
Chem., Int. Ed. 2005, 44, 2632. For recent examples, see: (d) DiRocco,
D. A.; Noey, E. L.; Houk, K. N.; Rovis, T. Angew. Chem., Int. Ed. 2012,
51, 2391. (e) Fang, X.; Chen, X.; Lv, H.; Chi, Y. R. Angew. Chem., Int.
Ed. 2011, 50, 11782. (f) Um, J. M.; DiRocco, D. A.; Noey, E. L.; Rovis,
T.; Houk, K. N. J. Am. Chem. Soc. 2011, 133, 11249. (g) DiRocco, D. A.;
Rovis, T. J. Am. Chem. Soc. 2011, 133, 10402. (h) Jousseaume, T.; Wurz,
€
(4) (a) Liu, F.; Bugaut, X.; Schedler, M.; Frohlich, R.; Glorius, F.
Angew. Chem., Int. Ed. 2011, 50, 12626. (b) Bugaut, X.; Liu, F.; Glorius,
F. J. Am. Chem. Soc. 2011, 133, 8130. (c) Piel, I.; Steinmetz, M.; Hirano,
€
K.; Frohlich, R.; Grimme, S.; Glorius, F. Angew. Chem., Int. Ed. 2011,
50, 4983. (d) Biju, A. T.; Glorius, F. Angew. Chem., Int. Ed. 2010, 49,
9761. (e) Biju, A. T.; Wurz, N. E.; Glorius, F. J. Am. Chem. Soc. 2010,
132, 5970. (f) Hirano, K.; Biju, A. T.; Piel, I.; Glorius, F. J. Am. Chem.
Soc. 2009, 131, 14190. For a recent highlight on this topic, see: (g)
DiRocco, D. A.; Rovis, T. Angew. Chem., Int. Ed. 2011, 50, 7982. For a
related hydroacylation of enol ethers, see: (h) He, J.; Tang, S.; Liu, J.; Su,
Y.; Pan, X.; She, X. Tetrahedron 2008, 64, 8797.
ꢀ
N. E.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 1410. (i) Sanchez-
Larios, E.; Thai, K.; Bilodeau, F.; Gravel, M. Org. Lett. 2011, 13, 4942.
(j) DiRocco, D. A.; Oberg, K. M.; Dalton, D. M.; Rovis, T. J. Am.
Chem. Soc. 2009, 131, 10872. (k) Liu, Q.; Rovis, T. Org. Lett. 2009, 11,
2856. (l) Liu, Q.; Perreault, S.; Rovis, T. J. Am. Chem. Soc. 2008, 130,
14066. (m) Enders, D.; Han, J. Synthesis 2008, 3864. (n) Enders, D.; Han,
J.; Henseler, A. Chem. Commun. 2008, 3989. (o) Enders, D.; Bonten,
M. H.; Raabe, G. Synlett 2007, 885.
(5) For the initial report of the concept, see: Breslow, R. J. Am. Chem.
Soc. 1958, 80, 3719.
r
10.1021/ol301045x
XXXX American Chemical Society