D. A. Leigh and R. T. McBurney, Angew. Chem., Int. Ed., 2011,
50, 9260–9327.
2 (a) I. T. Harrison and S. Harrison, J. Am. Chem. Soc., 1967, 89,
5723–5724; (b) G. Schill, W. Beckmann and W. Vetter, Angew.
Chem., Int. Ed. Engl., 1973, 12, 665–666; (c) C. A. Schalley,
K. Beizai and F. Vogtle, Acc. Chem. Res., 2001, 34, 465–476;
¨
(d) A. Harada, A. Hashidzume, H. Yamaguchi and Y. Takashima,
Chem. Rev., 2009, 109, 5974–6023; (e) H. Lahlali, K. Jobe,
M. Watkinson and S. M. Goldup, Angew. Chem., Int. Ed., 2011,
50, 4151–4155.
3 (a) B. L. Feringa, Acc. Chem. Res., 2001, 34, 504–513; (b) R. Klajn,
J. F. Stoddart and B. A. Grzybowski, Chem. Soc. Rev., 2010, 39,
2203–2237; (c) H. Li, A. C. Fahrenbach, A. Coskun, Z. Zhu,
G. Barin, Y. L. Zhao, Y. Y. Botros, J. P. Sauvage and
J. F. Stoddart, Angew. Chem., Int. Ed., 2011, 50, 6782–6788.
4 (a) C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly,
J. Sampaio, F. M. Raymo, J. F. Stoddart and J. R. Heath, Science,
2000, 289, 1172–1175; (b) J. E. Green, J. W. Choi, A. Boukai,
Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo,
B. A. Sheriff, K. Xu, Y. S. Shin, H. R. Tseng, J. F. Stoddart and
J. R. Heath, Nature, 2007, 445, 414–417.
5 (a) M. C. Jimenez, C. Dietrich-Buchecker and J. P. Sauvage, Angew.
Chem., Int. Ed., 2000, 39, 3284–3287; (b) Y. Liu, A. H. Flood,
P. A. Bonvallet, S. A. Vignon, B. H. Northrop, H. R. Tseng,
J. O. Jeppesen, T. J. Huang, B. Brough, M. Baller, S. Magonov,
S. D. Solares, W. A. Goddard, C. M. Ho and J. F. Stoddart, J. Am.
Chem. Soc., 2005, 127, 9745–9759; (c) J. Wu, K. C. Leung,
D. Benitez, J. Y. Han, S. J. Cantrill, L. Fang and J. F. Stoddart,
Angew. Chem., Int. Ed., 2008, 47, 7470–7474.
6 (a) J. D. Badjic, V. Balzani, A. Credi, S. Silvi and J. F. Stoddart,
Science, 2004, 303, 1845–1849; (b) J. D. Badjic, C. M. Ronconi,
J. F. Stoddart, V. Balzani, S. Silvi and A. Credi, J. Am. Chem. Soc.,
2006, 128, 1489–1499.
7 J. Berna, D. A. Leigh, M. Lubomska, S. M. Mendoza, E. M. Perez,
P. Rudolf, G. Teobaldi and F. Zerbetto, Nat. Mater., 2005, 4,
704–710.
8 (a) T. D. Nguyen, H. R. Tseng, P. C. Celestre, A. H. Flood, Y. Liu,
J. F. Stoddart and J. I. Zink, Proc. Natl. Acad. Sci. U. S. A., 2005,
102, 10029–10034; (b) S. Saha, K. C. F. Leung, T. D. Nguyen,
J. F. Stoddart and J. I. Zink, Adv. Funct. Mater., 2007, 17,
685–693.
9 (a) W. Clegg, C. Gimenez-Saiz, D. A. Leigh, A. Murphy, A. M. Z.
Slawin and S. J. Teat, J. Am. Chem. Soc., 1999, 121, 4124–4129;
(b) P. T. Glink, A. I. Oliva, J. F. Stoddart, A. J. P. White and
D. J. Williams, Angew. Chem., Int. Ed., 2001, 40, 1870–1875;
(c) A. F. Kilbinger, S. J. Cantrill, A. W. Waltman, M. W. Day
and R. H. Grubbs, Angew. Chem., Int. Ed., 2003, 42, 3281–3285;
(d) J. Wu, K. C. Leung and J. F. Stoddart, Proc. Natl. Acad. Sci.
U. S. A., 2007, 104, 17266–17271; (e) P. G. Clark, E. N. Guidry,
W. Y. Chan, W. E. Steinmetz and R. H. Grubbs, J. Am. Chem.
Soc., 2010, 132, 3405–3412; (f) M. E. Belowich, C. Valente and
J. F. Stoddart, Angew. Chem., Int. Ed., 2010, 49, 7208–7212;
(g) A. M. Fuller, D. A. Leigh and P. J. Lusby, J. Am. Chem.
Soc., 2010, 132, 4954–4959; (h) D. M. D’Souza, D. A. Leigh,
L. Mottier, K. M. Mullen, F. Paolucci, S. J. Teat and S. Zhang,
J. Am. Chem. Soc., 2010, 132, 9465–9470; (i) N. Momcilovic,
P. G. Clark, A. J. Boydston and R. H. Grubbs, J. Am. Chem.
Soc., 2011, 133, 19087–19089.
10 S. Dasgupta and J. Wu, Chem. Sci., 2012, 3, 425–432.
11 C. Zhang, S. Li, J. Zhang, K. Zhu, N. Li and F. Huang, Org. Lett.,
2007, 9, 5553–5556.
12 P. R. Ashton, P. J. Campbell, E. J. T. Chrystal, P. T. Glink,
S. Menzer, D. Philp, N. Spencer, J. F. Stoddart, P. A. Tasker and
D. J. Williams, Angew. Chem., Int. Ed. Engl., 1995, 34, 1865–1869.
13 P. R. Ashton, I. Baxter, M. C. T. Fyfe, F. M. Raymo, N. Spencer,
J. F. Stoddart, A. J. P. White and D. J. Williams, J. Am. Chem.
Soc., 1998, 120, 2297–2307.
Fig. 4 Capped stick (a) and space-filling (b) representation for the
calculated structure of [2]rotaxane 12ÁBAr4, showing short contact
distances (in A). (a) In capped stick structures, [C–HÁ Á ÁO] and
[N–HÁ Á ÁO] distances are shown. Hydrogen atoms not involved in
short contact distances are omitted for clarity. (b) In space-filling
representation, oxygen atoms of crown ether and fluorine atoms of the
dumbbell are represented in red and yellow, respectively. All the
hydrogen atoms are omitted for clarity.
Theoretical calculations at the B3LYP/6-31+G(d,p) level
of theory were conducted to understand the geometry of
the [2]rotaxane 12 cation.15 This method was validated by
comparing the optimized structure of an analogous [2]rotaxane
with dibenzylammonium dumbbell interlocked with a [20]crown
ether10 with its crystallographic structure, and it was confirmed
that the computed geometry was in good agreement with the
experimental observation. Similar calculations on cation 12
predict an interlocked [2]rotaxane structure involving multiple
[C–HÁ Á ÁO] and [N–HÁ Á ÁO] interactions (Fig. 4a). The space-
filling representation (Fig. 4b) gives an estimate of the cavity
size of the [20]crown ether being smaller than the volume of
the CF3 group, which is consistent with the experimental
results confirming the role of the CF3 moiety as a stopper
for the [20]crown ether.
In conclusion, the potential of alkyl or fluorinated alkyl
groups acting as stoppers has been studied in detail, with the
[20]crown ether as the encircling macrocycle. RCM has been
utilized to clip the macrocycle onto the dumbbell. Indeed, we
have obtained a very strongly interlocked [2]rotaxane on the
PhCH2NH2+CH2CF3 dumbbell encircled with a [20]crown
ether, highlighting the role of trifluoromethyl group in enhancing
the template effect (needed for clipping) along with acting as a
stopper. The [2]rotaxane 12ÁBAr4, though not stable in polar
solvents, remains extremely stable in chlorinated solvents even
at 373 K, underlying the steric resistance offered by the
trifluoromethyl group is sufficient for acting as a stopper, which
is also supported by theoretical calculations. The [2]rotaxane
12ÁBAr4 represents the smallest [2]rotaxane reported so far, in
terms of the molar mass and the total number of the atoms for
the cationic part.16
This work was financially supported by the NUS AcRF
Tier 1 grant (R-143-000-467-112) and KAUST. We thank
Han Yanhui and Ong Wei Qiang for 2D NMR analysis.
14 B. A. Blight, A. Camara-Campos, S. Djurdjevic, M. Kaller,
D. A. Leigh, F. M. McMillan, H. McNab and A. M. Slawin,
J. Am. Chem. Soc., 2009, 131, 14116–14122.
15 See ESIw for computational details.
Notes and references
16 (a) C. C. Hsu, N. C. Chen, C. C. Lai, Y. H. Liu, S. M. Peng and
S. H. Chiu, Angew. Chem., Int. Ed., 2008, 47, 7475–7478;
(b) H. Lahlali, K. Jobe, M. Watkinson and S. M. Goldup, Angew.
Chem., Int. Ed., 2011, 50, 4151–4155.
1 (a) D. B. Amabilino and J. F. Stoddart, Chem. Rev., 1995, 95,
2725–2828; (b) J. F. Stoddart, Chem. Soc. Rev., 2009, 38,
1802–1820; (c) J. E. Beves, B. A. Blight, C. J. Campbell,
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 4821–4823 4823