molecule (Fig. 5 and Fig. S7–10w). Consistent with the singlet-
oxygen phosphorescence emission, the highest efficiency was
also observed for orthogonal meso–b linked dimer 2b under
comparable conditions and the second most efficient one
was 2d. In contrast, BODIPY dimers 2a and 2c showed much
lower efficiency in the singlet oxygen generation. Our results
confirmed the calculation by Akkaya regarding the great effect
of orthogonality of the BODIPY dimer on their efficiencies in
the singlet oxygen generation.7
This work is supported by the National Natural Science
Foundation of China (Grants 20802002, 20902004 and 21072005),
Anhui Province (Grants 090416221 and KJ2009A130) and
Ministry of Education of China (Grant 20093424120001).
Fig. 4 Singlet oxygen phosphorescence with sensitization from dimeric
BODIPYs 2b (solid) and 2d (dashed) in toluene at equal absorbances at
the wavelength of 509 nm with InGaAs as the detector. Plots were based
on the average of 10 times collection.
meso–b7 directly linked BODIPY dimers. The fluorescence
lifetime was measured by a time-correlated single photon
counting method excited by a CdS portable diode laser (50 ps
pulse width) and the emission was monitored at the maximum
emission wavelength. The time evolution of the luminescence is
described by either a single or double exponential decay for
these BODIPY dimers under an experimental resolution of
100 ps.13 The excimer formation shortens the lifetime of
monomer moieties, for which the value is 2.84, 2.41, 1.37
and 1.08 ns for 2a–d, respectively. The excimer lifetime is 5.60,
4.63 and 3.85 ns for 2b–d, respectively.
Notes and references
1 (a) A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891–4932;
(b) G. Ulrich, R. Ziessel and A. Harriman, Angew. Chem., Int. Ed.,
2008, 47, 1184–1201; (c) R. Ziessel, G. Ulrich and A. Harriman,
New J. Chem., 2007, 31, 496–501; (d) N. Boens, V. Leen and
W. Dehaen, Chem. Soc. Rev., 2012, 41, 1130–1172.
2 (a) R. Ziessel and A. Harriman, Chem. Commun., 2011, 47,
611–631; (b) T. Bura and R. Ziessel, Tetrahedron Lett., 2010, 51,
2875–2879; (c) S. Mula, G. Ulrich and R. Ziessel, Tetrahedron
Lett., 2009, 50, 6383–6388; (d) O. A. Bozdemir, S. Erbas-Cakmak,
O. O. Ekiz, A. Dana and E. U. Akkaya, Angew. Chem., Int. Ed.,
2011, 50, 10907–10912; (e) X. Zhang, Y. Xiao and X. Qian, Org.
Lett., 2008, 10, 29–32.
3 (a) N. Saki, T. Dinc and E. U. Akkaya, Tetrahedron, 2006, 62,
2721–2725; (b) A. C. Benniston, G. Copley, A. Harriman,
D. Howgego, R. W. Harrington and W. Clegg, J. Org. Chem.,
2010, 75, 2018–2027.
To test a possible use of these dyes as singlet oxygen
photosensitizers, we studied their ability to generate singlet
oxygen.4c,7 The singlet oxygen phosphorescence for BODIPY
dimers 2a–d (Fig. 4 and Fig. S6w) was obtained in toluene,
excited at a wavelength of 509 nm and detected with a near-
IR-sensitive detector. When excited at equal absorptivity
concentrations for all compounds, BODIPY dimer 2b gave
the strongest singlet-oxygen phosphorescence emission at the
signature wavelengths (with a maximum at around 1260 nm).
A relatively weaker singlet-oxygen phosphorescence emission
centred at around 1274 nm was observed for BODIPY dimer
2d. By contrast, weak singlet oxygen phosphorescence emis-
sions were observed for 2a and 2c (Fig. S6w). In addition, they
were entrapped in the emissions of excited-state charge-
transfer species12 in these two BODIPY dimers, due to the
lack of pyrrolic substituents in the newly formed BODIPY
component to stabilize the excited-state charge-transfer species
in 2a and 2c.
4 (a) M. Broring, F. Bregier, R. Kruger and C. Kleeberg, Eur. J.
¨
C. Kleeberg, S. Kohler, X. Xie, B. Ventura and L. Flamigni,
¨
Inorg. Chem., 2008, 5505–5512; (b) M. Broring, R. Kruger, S. Link,
Chem.–Eur. J., 2008, 14, 2976–2983; (c) B. Ventura, G. Marconi,
M. Broring, R. Kruger and L. Flamigni, New J. Chem., 2009, 33,
¨
428–438.
5 (a) S. Rihn, M. Erdem, A. De Nicola, P. Retailleau and R. Ziessel,
Org. Lett., 2011, 13, 1916–1919; (b) Y. Hayashi, S. Yamaguchi,
W. Y. Cha, D. Kim and H. Shinokubo, Org. Lett., 2011, 13,
2992–2995; (c) A. B. Nepomnyashchii, M. Broring, J. Ahrens and
¨
A. J. Bard, J. Am. Chem. Soc., 2011, 133, 8633–8645.
6 M. T. Whited, N. M. Patel, S. T. Roberts, K. Allen, P. I. Djurovich,
S. E. Bradforth and M. E. Thompson, Chem. Commun., 2012, 48,
284–286.
7 Y. Cakmak, S. Kolemen, S. Duman, Y. Dede, Y. Dolen, B. Kilic,
Z. Kostereli, L. T. Yildirim, A. L. Dogan, D. Guc and E. U.
Akkaya, Angew. Chem., Int. Ed., 2011, 50, 11937–11941.
8 (a) H. L. Kee, C. Kirmaier, L. Yu, P. Thamyongkit, W. J. Youngblood,
M. E. Calder, L. Ramos, B. C. Noll, D. F. Bocian, R. Scheidt,
R. R. Birge, J. S. Lindsey and D. Holten, J. Phys. Chem. B, 2005,
109, 20433–20444; (b) G. J. Hedley, A. Ruseckas, A. Harriman and
D. W. Samuel, Angew. Chem., Int. Ed., 2011, 50, 6634–6637;
(c) M. K. Kuimova, G. Yahioglu, J. A. Levitt and K. Suhling,
J. Am. Chem. Soc., 2008, 130, 6672–6673.
The relative efficiency of these four BODIPY dimers in
generating singlet oxygen was further investigated in distilled
toluene by using 1,3-diphenylisobenzofuran (DPBF) as a trap
9 (a) L. Jiao, C. Yu, J. Li, Z. Wang, M. Wu and E. Hao, J. Org.
Chem., 2009, 74, 7525–7528; (b) C. Yu, L. Jiao, H. Yin, Z. Zhou,
W. Pang, Y. Wu, Z. Wang, Y. Gao and E. Hao, Eur. J. Org.
Chem., 2011, 5460–5468.
10 (a) S. Kolemen, Y. Cakmak, S. Erten-Ela, Y. Altay, J. Brendel,
M. Thelakkat and E. U. Akkaya, Org. Lett., 2010, 12, 3812–3815;
(b) L. Jiao, M. Liu, M. Zhang, C. Yu, Z. Wang and E. Hao, Chem.
Lett., 2011, 40, 623–625.
11 A. L. L. East, P. Cid-Aguero, H. Liu, R. H. Judge and E. C. Lim,
J. Phys. Chem. A, 2000, 104, 1456–1460.
12 (a) M. Van der Auweraer, A. Gilbert and F. C. De Schryver,
J. Am. Chem. Soc., 1980, 102, 4007–4017; (b) T. Chakraborty and
E. C. Lim, J. Phys. Chem., 1995, 99, 17505–17508.
13 X.-F. Zhang and J. Wang, J. Phys. Chem. A, 2011, 115,
8597–8603.
Fig. 5 Comparative DPBF (initial concentration at 5 Â 10À5 M)
degradation profiles in toluene by BODIPY dimers 2a (’), 2b ( ),
2c ( ) and 2d ( ) (1 Â 10À6 M). Filtered light > 455 nm used.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 5437–5439 5439