monitored by TLC, THF was evaporated off and water was
added to the residue. The aqueous layer was extracted with
CHCl3 (25 mL × 3) and dried over anhydrous Na2SO4. Purifi-
cation of the crude mass by silica gel column chromatography
using 3% CH3OH in CHCl3 as eluent yielded the product 1
References
1 (a) A. W. Czarnik, ed. Fluorescent Chemosensors for Ions and Molecule
Recognition, American Chemical Society, Washington, D. C., 1992;
(b) A. P. de Silva, D. B. Fox, A. J. M. Huxley and T. S. Moody, Coord.
Chem. Rev., 2000, 205, 41; (c) X. He, H. Liu, Y. Li, S. Wang, Y. Li,
N. Wang, J. Xiao, X. Xu and D. Zhu, Adv. Mater., 2005, 17, 2811; (d) J.
R. Miller, J. Rowland, P. J. Lechler, M. Desilers and L. C. Hsu, Water,
Air, Soil Pollut., 1996, 86, 373; (e) P. B. Tchounwou, W. K. Ayensu,
N. Ninashvili and D. Sutton, Environ. Toxicol. Chem., 2003, 18, 149.
2 (a) G. E. Mckeown-Eyssen, J. Ruedy and A. Neims, Am. J. Epidemiol.,
1983, 118, 470; (b) P. W. Davidson, G. J. Myers, C. Cox, C. F. Shamlaye,
D. O. Marsh, M. A. Tanner, M. Berlin, J. Sloane-Reeves, E. Cernichiari,
O. Choisy, A. Choi and T. W. Clarkson, Neurotoxicol. Teratol., 1995, 16,
677; (c) P. Grandjean, P. Weihe, R. F. White and F. Debes, Environ. Res.,
1998, 77, 165; (d) Z. Zhang, D. Wu, X. Guo, X. Qian, Z. Lu, Q. Zu,
Y. Yang, L. Duan, Y. He and Z. Feng, Chem. Res. Toxicol., 2005, 18,
1814; (e) P. Grandjean, P. Weihe, R. F. White and F. Debes, Environ. Res.,
1998, 77, 165.
3 (a) M. Yuan, Y. Li, J. Li, C. Li, X. Liu, J. Lv, J. Xu, H. Liu, S. Wang and
D. Zhu, Org. Lett., 2007, 9, 2313; (b) M. Zhu, M. Yuan, X. Liu, J. Xu,
J. Lv, C. Huang, H. Liu, Y. Li, S. Wang and D. Zhu, Org. Lett., 2004, 6,
1489; (c) H.-K. Chen, C.-Y. Lu, H.-J. Cheng, S.-J. Chen, C.-H. Hu and
A.-T. Wu, Carbohydr. Res., 2010, 345, 2557; (d) J. Hu, M. Zhang, B.
L. Yu and Y. Ju, Bioorg. Med. Chem. Lett., 2010, 20, 4342; (e) A. Thakur,
S. Sardar and S. Ghosh, Inorg. Chem., 2011, 50, 7066; (f) P. D. Beer,
Chem. Soc. Rev., 1989, 18, 409; (g) A. W. Czarnik, Acc. Chem. Res.,
1994, 27, 302; (h) S.-M. Cheung and W.-H. Chan, Tetrahedron, 2006, 62,
8379; (i) E. M. Nolan and S. J. Lippard, Chem. Rev., 2008, 108, 3443;
( j) H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim and J. Yoon, Chem. Soc.
Rev., 2008, 37, 1465; (k) J. Wang, X. Qian and J. Cui, J. Org. Chem.,
2006, 71, 4308; (l) A. Coskun, M. D. Yilmaz and E. U. Akkaya, Org.
Lett., 2007, 9, 607; (m) A. Cabellero, A. Espinosa, A. Tarraga and
P. Molina, J. Org. Chem., 2008, 73, 5489; (n) M. G. Choi, D. H. Ryu, J.
L. Jeon, S. Cha, J. Cho, H. H. Joo, K. S. Hong, C. Lee, S. Ahn and S.-
K. Chang, Org. Lett., 2008, 10, 3717; (o) J. Wang and B. Liu, Chem.
Commun., 2008, 4759; (p) Y. Zhao, B. Zheng, J. Du, D. Xiao and
L. Yang, Talanta, 2011, 85, 2194; (q) J. F. Zhang and J. S. Kim, Anal.
Sci., 2009, 25, 1271 and references cited therein (r) M. Suresh, A. Ghosh
and A. Das, Chem. Commun., 2008, 3906; (s) J. S. Kim, S. Y. Lee,
J. Yoon and J. Vicens, Chem. Commun., 2009, 4791; (t) B. Nisar
Ahamed, I. Ravikumar and P. Ghosh, New J. Chem., 2009, 33, 1825.
4 Rhodamine-based ratiometric sensors for Hg2+: (a) G.-Q. Shang, X. Gao,
M.-X. Chen, H. Zheng and J.-G. Xu, J. Fluoresc., 2008, 18, 1187;
(b) H. Liu, P. Yu, D. Du, C. He, B. Qiu, X. Chen and G. Chen, Talanta,
2010, 81, 433; (c) G. He, X. Zhang, C. He, X. Zhao and C. Duan, Tetra-
hedron, 2010, 66, 9762; (d) S. Atilgan, I. Kutuk and T. Ozdemir, Tetra-
hedron Lett., 2010, 51, 892.
1
(0.268 g, 90%), mp 142 °C; H NMR (400 MHz, CDCl3): δ
8.44 (bt, 1H), 8.01 (d, 1H, J = 8 Hz), 7.50 (dd, 2H, J1 = 8 Hz, J2
= 4 Hz), 7.43 (d, 2H, J = 8 Hz), 7.31 (t, 1H, J = 8 Hz),
7.16–7.09 (m, 4H), 6.36–6.34 (m, 4H), 6.16 (dd, 2H, J1 = 8 Hz,
J2 = 4 Hz), 3.77 (t, 2H, J = 4 Hz), 3.67 (s, 2H), 3.38–3.28 (m,
10H), 3.05 (s, 2H), 2.84 (m, 2H), 2.73–2.71 (m, 2H), 1.15 (t,
12H, J = 7.20 Hz), 13C NMR (100 MHz, CDCl3): δ 171.4,
170.1, 153.9, 153.2, 148.9, 137.9, 133.0,130.2, 129.3, 128.9,
128.4, 128.3, 127.2, 123.9, 123.0, 108.2, 104.2, 97.6, 66.0,
59.7, 59.4, 58.8, 58.5, 44.3, 40.5, 39.2, 12.5; Mass (LCMS)
676.2 (M + 1)+, Anal. Calcd for C41H49N5O4: C, 72.86; H, 7.31;
N, 10.36. Found: C, 72.84; H, 7.29; N, 10.39.
General procedure for fluorescence and UV-vis titrations
Stock solutions of the receptor were prepared in 4 : 1(v/v)
CH3CN : H2O containing 10 mM Tris/HCl buffer (pH = 7.0) in
the concentration range ∼10−5 M. 2.5 ml of the receptor solution
was taken in the cuvette. Stock solutions of guests in the concen-
tration range ∼10−4 M, were prepared in the same solvents and
were individually added in different amounts to the receptor sol-
ution. Upon addition of metal ions, the change in emission of
the receptor was noted. The same stock solutions for receptor
and guests were used to perform the UV-vis titration experiment.
The metal solution was successively added in different amounts
to the receptor solution (2.5 mL) in the cuvette and the absorp-
tion spectra were recorded. Both fluorescence and UV-vis titra-
tion experiments were carried out at 25 °C.
Job plots
The stoichiometry was determined by the continuous variation
method (Job plot).12 In this method, solutions of host and guests
of equal concentrations were prepared in the solvents used in the
experiment. Then host and guest solutions were mixed in differ-
ent proportions maintaining a total volume of 3 mL of the
mixture. All the prepared solutions were kept for 1 h with
occasional shaking at room temperature. Then emission and
absorbance of the solutions of different compositions were
recorded. The concentration of the complex, i.e. [HG], was cal-
culated using the equation [HG] = ΔI/I0 × [H] or [HG] = ΔA/A0
× [H] where ΔI/I0 and ΔA/A0 indicate the relative emission and
absorbance intensities respectively. [H] corresponds the concen-
tration of pure host. The mole fraction of the host (XH) was
plotted against concentration of the complex [HG]. In the plot,
the mole fraction of the host at which the concentration of the
host–guest complex concentration [HG] is at a maximum, gives
the stoichiometry of the complex.
5 Rhodamine-based turn-on sensors for Hg2+: (a) M. Lee, J. Wu, J. Lee,
J. Jung and J. S. Kim, Org. Lett., 2007, 9, 2501; (b) J. F. Zhang and J.
S. Kim, Anal. Sci., 2009, 25, 1271 and references cited therein
(c) Y. Shiraishi, S. Sumiya, Y. Kohno and T. Hirai, J. Org. Chem., 2008,
73, 8571; (d) M. Kumar, N. Kumar and V. Bhalla, Sens. Actuators, B,
2012, 161, 311; (e) J. Huang, Y. Xu and X. Qian, J. Org. Chem., 2009,
74, 2167; (f) J. H. Soh, K. M. K. Swamy, S. K. Kim, S. Kim, S. H. Lee
and J. Yoon, Tetrahedron Lett., 2007, 48, 5966; (g) S. Saha, M.
U. Chhatbar, P. Mahato, L. Praveen, A. K. Siddhanta and A. Das, Chem.
Commun., 2012, 48, 1659; (h) H. Yang, Z. Zhou, K. Huang, M. Yu,
F. Li, T. Yi and C. Huang, Org. Lett., 2007, 9, 4729; (i) J. Luo, S. Jiang,
S. Qin, H. Wu, Y. Wang, J. Jiang and X. Liu, Sens. Actuators, B, 2011,
160, 1191 and references cited therein.
6 (a) G. Grynkiewicz, M. Poenie and R. Y. Tsien, J. Biol. Chem., 1985,
260, 3440; (b) Z. Guo, W. Zhu, L. Shen and H. Tian, Angew. Chem., Int.
Ed., 2007, 46, 5549; (c) H. Yu, M. Fu and Y. Xiao, Phys. Chem. Chem.
Phys., 2010, 12, 7386.
7 (a) K. Ghosh and T. Sarkar, Supramol. Chem., 2011, 23, 435;
(b) K. Ghosh and T. Sen, Beilstein J. Org. Chem., 2010, 6, 44, DOI:
10.3762/bjoc.6.44; (c) K. Ghosh and I. Saha, Tetrahedron Lett., 2010, 51,
4995; (d) K. Ghosh, T. Sarkar and D. Tarafdar, Supramol. Chem., 2011,
DOI: 10.1080/10610278.2011.641966.
Acknowledgements
8 (a) K. Ghosh, A. R. Sarkar and G. Masanta, Tetrahedron Lett., 2007, 48,
8725; (b) K. Ghosh, A. R. Sarkar and A. Patra, Tetrahedron Lett., 2009,
50, 6557; (c) K. Ghosh, T. Sen and A. Patra, New J. Chem., 2010, 34,
1387; (d) K. Ghosh, G. Masanta and A. P. Chattopadhyay, Eur. J. Org.
Chem., 2009, 4515; (e) K. Ghosh, D. Kar and P. Ray Chowdhury,
We thank DST and UGC, New Delhi, India for providing facili-
ties in the department. TS thanks CSIR, New Delhi, India for a
fellowship.
3242 | Org. Biomol. Chem., 2012, 10, 3236–3243
This journal is © The Royal Society of Chemistry 2012