2902
K. Karnakar et al. / Tetrahedron Letters 53 (2012) 2897–2903
O
References and notes
CH3
R
O
O
R
O
R1
R1
1. (a) Dunn, P. J. Chem. Soc. Rev. 2012, 41, 1452. and references therein; (b)
CH3
N
H2N
R1
R1
N
Ph
Anastas, P. T.; Warner, J. C. Green Chemistry, Theory and Practice; Oxford
University Press: Oxford, 1998.
2. Toda, F.; Tanaka, K. Chem. Rev. 2000, 100, 1025.
3. (a) Luo, Z. Y.; Zang, Q. S.; Oderaotoshi, Y.; Curran, D. P. Science 2001, 291, 1766;
(b) Harvath, I. T. Acc. Chem. Res. 1998, 31, 641.
O
R1
R1
R-CHO
N
HN
OH
(B)
N
Ph
(A)
4. Oakes, R. S.; Califford, A. A.; Rayner, C. M. J. Chem. Soc., Perkin Trans. 1 2001, 917.
5. Sheldon, R. A. Chem. Commun. 2001, 2399.
-H2O
6. Chen, J.; Spear, S. K.; Huddleston, J. G.; Rogers, R. D. Green Chem. 2005, 7, 64.
7. Zhang, Z.-H.; Yin, L.; Wang, Y.-M.; Liu, J.-Y.; Li, Y. Green Chem. 2004, 6, 563.
8. Ferravoschi, P.; Fiecchi, A.; Grisenti, P.; Santaniello, E.; Trave, S. Synth. Commun.
1987, 17, 1569.
9. Blanton, J. R. Synth. Commun. 1997, 27, 2093.
10. Chandrasekhar, S.; Narsihmulu, Ch.; Sultana, S. S.; Reddy, N. R. K. Org. Lett.
2002, 4, 4399.
O
R
N
R
O
CH3
CH3
N
R1
R1
Aromatization
N
R1
R1
N
N
N
H
Ph
Ph
11. Chandrasekhar, S.; Narsihmulu, Ch.; Sultana, S. S.; Reddy, N. R. K. Chem.
Commun. 2003, 1716.
Scheme 2. Possible mechanism.
12. Namboodiri, V. V.; Varama, R. S. Green Chem. 2001, 3, 146.
13. Haimov, A.; Neumann, R. Chem. Commun. 2002, 876.
14. Chandrasekhar, S.; Narsihmulu, Ch.; Chandrasekhar, G.; Shyamsundar, T.
Tetrahedron Lett. 2004, 45, 2421.
15. (a) Crenshaw, R. R.; Luke, G. M.; Smirnoff, P. J. Med. Chem. 1976, 19, 262; (b)
Smirnoff, P.; Crenshaw, R. R. Antimicrob. Agents Chemother. 1977, 11, 571; (c)
Smirnoff, P.; Crenshaw, R. R. Chem. Abstr. 1977, 85, 153844d; (d) Crenshaw,
R.R.; Luke, G. M.; Smirnoff, P. Canadian patent 10,32,538, 1978; Chem. Abstr.
1978, 89, 179995r.
16. GeinStein, R.; Biel, J. H.; Singh, T. J. Med. Chem. 1970, 13, 153.
17. Bristol-Meyers Co., French Demande 2, 149, 275, 1973; Chem. Abstr. 1973, 79,
78784n.
18. Bell, M. R.; Ackerman, J. H. US Patent 4920,128; Chem. Abstr. 1990, 113,
172015b.
19. (a) Terrett, N. K.; Bell, A. S.; Brown, D.; Ellis, p. Bioorg. Med. Chem. Lett. 1996, 6,
1819; (b) Singh, S. K.; Rebby, P. G.; Rao, K. S.; Lohray, B. B.; Misra, P.; Rajjak, S.
A.; Rao, Y. K.; Venkateswarlu, A. Bioorg. Med. Chem. Lett. 2004, 14, 499; (c)
Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter,
S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier,
D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.;
Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.;
Isakson, P. C. J. Med. Chem. 1997, 40, 1347; (d) Yu, K.; Toral-Barza, L.; Shi, C.;
Zhang, W. G.; Lucas, J.; Shor, B.; Kim, J.; Verheijen, J.; Curran, K.; Malwitz, D. J.;
Cole, D. C.; Ellingboe, J.; Ayral-Kaloustian, S.; Mansour, T. S.; Gibbons, J. J.;
Abraham, R. T.; Nowak, P.; Zask, A. Cancer Res. 2009, 69, 6232.
20. (a) Musierowicz, A.; Niementowski, S.; Tomasik, Z. Rocz. Chem. 1928, 8, 325; (b)
Tomasik, Z. Rocz. Chem. 1928, 8, 345; (c) Tomasik, D.; Tomasik, P.; Abramovitch,
R. A. J. Heterocycl. Chem. 1983, 20, 1539.
21. (a) Hayes, R.; Meth-Cohn, O. Tetrahedron Lett. 1982, 23, 1613; (b) Rajendran, S.
P.; Manonmani, M.; Vijayalakshmi, S. Org. Prep. Proced. Int. 1994, 26, 383; (c)
Paul, S.; Gupta, M.; Gupta, R.; Loupy, A. Tetrahedron Lett. 2001, 42, 3827; (d)
Quiroga, J.; Mejia, D.; Insuasty, B.; Abonia, R.; Nogeras, M.; Sanchez, A.; Cobo, J.;
Low, J. N. Tetrahedron 2001, 57, 6947.
Figure 2. ORTEP diagram of compound 8 (30% probability).
22. Shi, D.-Q.; Yang, F. J. Heterocycl. Chem. 2011, 48, 308.
23. Andriushchenko, A. Y.; Desenko, S. M.; Cherneko, V. N.; Chebanov, V. A. J.
Heterocycl. Chem. 2011, 48, 365.
adduct, as an intermediate (B). This intermediate on further
cyclization, dehydration, and aromatization yields the final prod-
uct as reported in the literature25 and it was further supported
by X-ray crystallography26 (Fig. 2). All products were characterized
by spectroscopic and analytical methods.27,28
In conclusion, we have demonstrated a mild and highly efficient
protocol for the synthesis of pyrazolo[3,4-b]quinoline derivatives
in excellent yields by using recyclable polyethylene glycol
(PEG)-400 as a reaction medium. Environmental acceptability, eco-
nomic viability, high yields, easy work-up, cleaner reaction pro-
files, and recyclability of PEG are the important features of this
protocol.
24. (a) Murthy, S. N.; Madhav, B.; Kumar, A. V.; Rao, K. R.; Nageswar, Y. V. D. Helv.
Chim. Acta 2009, 92, 2118; (b) Murthy, S. N.; Madhav, B.; Kumar, A. V.; Rao, K.
R.; Nageswar, Y. V. D. Tetrahedron 2009, 65, 5251; (c) Madhav, B.; Murthy, S. N.;
Reddy, V. P.; Rao, K. R.; Nageswar, Y. V. D. Tetrahedron Lett. 2009, 50, 6025; (d)
Murthy, S. N.; Madhav, B.; Reddy, V. P.; Nageswar, Y. V. D. Tetrahedron Lett.
2010, 51, 3649; (e) Shankar, J.; Karnakar, K.; Srinivas, B.; Nageswar, Y. V. D.
Tetrahedron Lett. 2010, 51, 3938; (f) Murthy, S. N.; Madhav, B.; Nageswar, Y. V.
D. Tetrahedron Lett. 2010, 51, 5252; (g) Ramesh, K.; Murthy, S. N.; Nageswar, Y.
V. D. Tetrahedron Lett. 2011, 52, 2362; (h) Anil Kumar, B. S. P.; Madhav, B.;
Harsha Vardhan Reddy, K.; Nageswar, Y. V. D. Tetrahedron Lett. 2011, 52, 2862.
25. Dommock, J. R.; Raghavan, S. K.; Bigam, G. E. Eur. J. Med. Chem. 1988, 23, 111.
26. X-ray data for the compound (Table 1, entry 8) was collected at room
temperature using a Bruker Smart Apex CCD diffractometer with graphite
monochromated Mo
Ka radiation (k = 0.71073 Å) with x-scan method.
Preliminary lattice parameters and orientation matrices were obtained from
four sets of frames. Unit cell dimensions were determined using 5040
reflections in the range of 2.41 < h < 27.86° for AM42. Integration and scaling
of intensity data were accomplished using SAINT program. The structure was
solved by direct methods using SHELXS97 and refinement was carried out by
full-matrix least-squares technique using SHELXL97. Anisotropic displacement
parameters were included for all non-hydrogen atoms. All H atoms were
positioned geometrically and treated as riding on their parent C atoms, with C–
H distances in the range of 0.93–0.97 Å and Uiso(H) values of 1.5Ueq(C) for
methyl H atoms and 1.2Ueq(C) for all other H atoms. Crystal data for AM42:
Acknowledgments
We thank the CSIR, New Delhi, India, for fellowships to K.K.,
S.N.M., G.S. and the UGC for fellowship to K.R.
Supplementary data
C
25H23N3O3, M = 413.46, Monoclinic, space group P21/c, a = 16.1526(12) Å,
b = 8.4512(6) Å, c = 19.2357(10) Å, b = 125.526(4)°, V = 2137.0(2) Å3, Z = 4,
Dcalc = 1.285 g/cm3, T = 294(2) K, = 0.086 mmÀ1
F(000) = 872, Mo
radiation, k = 0.71073 Å, 19,783 reflections collected, 3749 unique
(Rint = 0.0182), 3312 with I >2 (I), R1 = 0.0390, wR2 = 0.1122, Final
GooF = 1.035. Intensity data were measured on Bruker Smart Apex with CCD
l
,
Ka
Supplementary data associated with this article can be found, in
r