5128
R1
C
0
2
R2
~
pph3
~6/ o
8
O,.~k_.~OH
Ph3 P4X,/'VCO~
5
6
R1 = CH2E~-I,
R~ = C H ~ H ,
R1 =CLIO,
R2 = H
~ = CH3
R2=CH3
3
4
7
OH
OH
0
11
levorotatory (8R,9S)-neodidemnilactone (2) [[~]D22-200° (c 0.17, MeOH)]. Thus, the absolute
stereochemistry of neodidemnilactone (2) is established to be 8R,9S. Further, the absolute stereochemistry of
didemnilactone (I) may be concluded to be 8R,9S from the similarity of the chiroptical properties of 1 and 2.7
Didemnilactone (1), neodidemnilactone (2), and the corresponding diol acids obtained by hydrolysis of I and
2 exhibit week binding activity (IC50 50 ~ 100 ~¢1) to leukotriene B4 receptors of human polymorphonuclear
leukocyte membrane fractions.
Acknowledgment: We are grateful to Dr, Masaaki Toda, Ono Pharmaceutical Co., Ltd. for biological tests.
Notes and References
1. 1:C20H2803 [m/z 316.2048 (M+), A +0.9 mmu]; [IX]D22-190° (c 0.18, MeOH); IR (CHC13) 3590, 3450,
1730 cm-1; UV (MeOH) ~.max 261 (e 24,600), 271 (30,500), 279 nm (25,400); EIMS m/z (relative intensity)
316 (M+, 42), 298 (14), 177 (12), 160 (100), 139 (42); ]H NMR (C6D6, 270 MHz) 8 0.88 (3 H, t, J = 7.6
Hz), 1.32 (1 H, m), 1.63 (1 H, m), 1.95 (2 H, m), 1.85-2.10 (4 H, m), 2.19 (1 H, m), 2.62 (1 H, m), 2.69
(2 H, dt, J = 1.0, 6.6 Hz), 3.65 (1 H, ddd, J -- 9.1, 3.9, 3.9 Hz), 5.22 (1 H, dd, J -- 11.5, 9.1 Hz), 5.36 (1
H, m), 5.35-5.40 (1 H, m), 5.41 (1 H, m), 5.57 (1 H, dt, J = 14.7, 6.6 Hz), 5.75 (1 H, m), 5.75 (1 H, dd,
J = 9.1, 9.1 Hz), 6.02 (1 H, ddt, J = 14.7, 11.2, 1.0 Hz), 6.17 (1 H, dd, J = 11.5, 11.5 Hz), 6.18 (1 H, dd,
J = 14.7, 11.2 Hz), 7.03 (1 H, dd, J = 14.7, 11.5 I-Iz); 13C NMR (C6D6, 67.8 MHz) 8 14.3 (q), 20.8 (t),
25.4 (t), 26.3 (t), 30.8 (t), 32.6 (t), 34.7 (t), 72.4 (d), 72.6 (d), 125.4 (d), 126.3 (d), 126.7 (d), 127.0 (d)
131.2 (d), 131.7 (d), 132.9 (d), 134.6 (d), 134.9 (d), 136.5 (d), 172.5 (s).
2. 2:C20H3003 [m/z 318.2191 (M+), A --0.3 mmu]; [CC]D22 -200° (c 0.17, MeOH); IR (CHC13) 3570, 3450,
1730 cm-1; UV (MeOH) ~,max 261 (e 22,900), 271 (29,100), 279 nm (24,000); EIMS m/z (relative intensity)
318 (M+, 49), 300 (12), 179 (33), 162 (100), 139 (67); tH NMR (C6D6, 270 MHz) 8 0.86 (3 H, t, J = 7.6
Hz), 1.10-1.40 (7 H, m), 1.63 (1 H, m), 1.85-2.10 (6 H, m), 2.20 (1 H, m), 2.62 (1 H, m), 3.65 (1 H,
ddd, J = 9.1, 3.9, 3.9 Hz), 5.22 (1 H, dd, J = 11.5, 9.1 Hz), 5.37 (1 H, m), 5.62 (1 H, dt, J = 14.7, 6.6
Hz), 5.74 (1 H, dd, J = 9.1, 9.1 Hz), 5.77 (1 H, m), 5.99 (1 H, ddt, J = 14.7, 11.2, 1.0 Hz), 6.19 (1 H,
dd, J = 11.5, 11.5 Hz), 6.20 (1 H, dd, J --- 14.7, 11.2 Hz), 7.03 (1 H, dd, J = 14.7, 11.5 Hz); 13C NMR
(C6D6, 67.8 MHz) ~ 14.2 (q), 22.8 (t), 25.4 (t), 26.3 (t), 29.2 (t), 31.7 (t), 32.7 (t), 33.0 (t), 34.7 (t), 72.4
(d), 72.6 (d), 125.5 (d), 126.3 (d), 126.8 (d), 131.1 (d), 131.7 (d), 135.0 (d), 136.7 (d), 136.8 (d), 172.4
(s).
3. Corey, E. J.; Marfat, A.; Goto, G.; Brion, F. J. Am. Chem. Soc. 1980, 102, 7984.
4. Satisfactory spectral and analytical data were obtained for all new compounds. All yields refer to materials
purified by column chromatography on silica gel.
5. This phosphonium salt was prepared from (g,g)-2,4-decadien-l-ol by reaction with Ph3P (1 equiv) and HC1
(1 equiv) in MeOH at room temperature (65%); cf. Riiegg, R; Schwieter, U; Ryser, G; Schudel, P.; Isler, O.
Helv. Chim. Acta 1961, 44, 985.
6. Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.
The isomeric 9-membered lactone was not detected.
7. A recent paper reports the occurrence of the related compounds having a 9-membered lactone and a triene;
Lindquist, N.; Fenical, W. Tetrahedron Lett. 1989, 30, 2735.
(Received in Japan 18 June 1991)