JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
6 Uchiyama, S.; Makino, Y. Chem. Commun. 2009, 19
2646–2648.
content copolymer were well controlled by the RAFT
method. PCN250 displays specific UV–vis signals when
changing the temperature and pH of the copolymer solution
in methanol/water (1/5, v/v). When pH is 4 or 10, the ab-
sorbance of the copolymer at 380 nm shows selective
decrease at a specific temperature range because of the co-
polymer solubility at these pH values, which cause the pre-
cipitation of the polymer and thus results in the light scatter-
ing. While at pH ¼ 7, the absorbance of the copolymer at
380 nm presents enhancement when the temperature rises,
which indicates the LCST value of the copolymer (LCST 35
ꢀC). However, the fluorescence intensity of this copolymer
shows enhancement with a rise in temperature regardless of
pH value. This copolymer dissolved in methanol/water (1/5,
v/v) solution shows weak fluorescence below 35 ꢀC, while
showing fluorescence enhancement above 35 ꢀC and satura-
tion at 52 ꢀC. The fluorescence intensity measured at 52 ꢀC
7 Shen, L. J.; Lu, X. Y.; Tian, H.; Zhu, W. H. Macromolecules
2011, 44, 5612–5618.
8 Wang, Y.; Li, X.; Hong, C. Y.; Pan, C. Y. J. Polym. Sci. Part A:
Polym. Chem. 2011, 49, 3280–3290.
9 Shiraishi, Y.; Miyarnoto, R.; Hirai, T. Langmuir 2008, 24,
4273–4279.
10 Liras, M.; Paris, R.; Quijada-Garrido, I.; Garcia, O. Macromo-
lecules 2011, 44, 80–86.
11 Chen, C. T.; Chen, C. Y. Chem. Commun. 2011, 47,
994–996.
12 Uchiyama, S.; Gota, C.; Okabe, K.; Funatsu, T.; Harada, Y. J.
Am. Chem. Soc. 2009, 131, 2766–2767.
13 Uchiyama, S.; Kawai, N.; de Silva, A. P.; Iwai, K. J. Am.
Chem. Soc. 2004, 126, 3032–3033.
14 Uchiyama, S.; Matsumura, Y.; de Silva, A. P.; Iwai, K. Anal.
Chem. 2004, 76, 1793–1798.
ꢀ
is 1.3-fold higher than that at 35 C.
15 Aoshima, S.; Sugihara, S. J. Polym. Sci. Part A: Polym.
Chem. 2000, 38, 3962–3965.
Moreover, for copolymers with comparable molecular
weights, the thermo-responsive properties of poly(NIP-
MAMm-co-CPMAn) changed with various monomer ratios
incorporated in copolymers, that is, with different m/n.
When m/n ¼ 51 (for PCN51), there is no LCST was observed
at the applied solution system. On the contrary, the absorb-
ance of the copolymer PCN51 at 380 nm decreases when the
temperature rises from 27 to 42 ꢀC, however, which shows
enhancement for PCN250 (m/n ¼ 250). However, the copoly-
mer shows fluorescence enhancement with a rise in temper-
ature regardless of PCN51 and PCN250 in different tempera-
ture range. In one word, the different component
incorporated in the copolymers also plays key role in the
LCST for copolymeric thermometers.
16 Pietsch, C.; Schubert, U. S.; Hoogenboom, R. Chem. Com-
mun. 2011, 47, 8750–8765.
17 Can, A.; Hoeppener, S.; Guillet, P.; Gohy, J. F.; Hoogen-
boom, R.; Schubert, U. S. J. Polym. Sci. Part A: Polym. Chem.
2011, 49, 3681–3687.
18 Lee, R. S.; Wu, K. P. J. Polym. Sci. Part A: Polym. Chem.
2011, 49, 3163–3173.
19 Pan, T. T.; He, W. D.; Li, L. Y.; Jiang, W. X.; He, C.; Tao, J. J.
Polym. Sci. Part A: Polym. Chem. 2011, 49, 2155–2164.
20 Medel, S.; Garcia, J. M.; Garrido, L.; Quijada-Garrido, I.; Paris,
R. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 690–700.
21 Tu, Y. L.; Wang, C. C.; Chen, C. Y. J. Polym. Sci. Part A:
Polym. Chem. 2011, 49, 2866–2877.
22 Zhu, W. H.; Guo, Z. Q.; Xiong, Y. Y.; Tian, H. Macromole-
cules 2009, 42, 1448–1453.
What’s more, PCN250 (m/n ¼ 250) shows fluorescence sup-
pression in the solution with high proton concentration. The
pH change in the medium plays a key role in the ON/OFF
switching for the fluorescent copolymeric thermometer. Thin
PCN250 film also showed fluorescence changes upon addi-
tion of proton, which indicates that this copolymer can be
made and applied as convenient detecting apparatus for
environmental detection of proton.
23 Uchiyama, S.; Matsumura, Y.; de Silva, A. P.; Iwai, K. Anal.
Chem. 2003, 75, 5926–5935.
24 Stich, M. I. J.; Nagl, S.; Wolfbeis, O. S.; Henne, U.; Schae-
ferling, M. Adv. Funct. Mater. 2008, 18, 1399–1406.
25 Wolfbeis, O. S.; Borisov, S. M. Anal. Chem. 2006, 78,
5094–5101.
26 Jorge, P. A. S.; Maule, C.; Silva, A. J.; Benrashid, R.; Santos,
J. L.; Farahi, F. Anal. Chim. Acta 2008, 606, 223–229.
27 Wolfbeis, O. S.; Borisov, S. M.; Krause, C.; Arain, S. Adv.
Mater. 2006, 18, 1511–1516.
This work was financially supported by NSFC/China
(50673025), National Basic Research 973 Program
(2006CB806200), Scientific Committee of Shanghai, and ECUST
Funds for Excellent Youth Faculties (YJ0157116).
28 Klimant, I.; Schroeder, C. R.; Neurauter, G. Microchim. Acta
2007, 158, 205–218.
29 Klimant, I.; Schroder, C. R.; Polerecky, L. Anal. Chem. 2007,
79, 60–70.
30 Wolfbeis, O. S.; Kocincova, A. S.; Nagl, S.; Arain, S.; Krause,
C.; Borisov, S. M.; Arnold, M. Biotechnol. Bioeng. 2008, 100,
430–438.
REFERENCES AND NOTES
1 Andresen, T. L.; Sun, H. H.; Almdal, K. Chem. Commun.
2011, 47, 5268–5270.
31 Hoogenboom, R.; Pietsch, C.; Schubert, U. S. Angew.
Chem.-Int. Ed. 2009, 48, 5653–5656.
2 Allard, E.; Larpent, C. J. Polym. Sci. Part A: Polym. Chem.
2008, 46, 6206–6213.
32 Hua, J. L.; Qu, Y.; Jiang, Y. H.; Tian, H. J. Polym. Sci. Part A:
Polym. Chem. 2009, 47, 1544–1552.
3 Zhu, W. H.; Shen, L. J.; Meng, X. L.; Guo, Z. Q.; Tian, H. Sci.
China Ser. B-Chem. 2009, 52, 821–826.
33 Aamer, K. A.; Tew, G. N. J. Polym. Sci. Part A: Polym.
Chem. 2007, 45, 5618–5625.
4 Tian, H.; Jiang, J. B.; Leng, B.; Xiao, X.; Zhao, P. Polymer
2009, 50, 5681–5684.
34 Gujraty, K. V.; Yanjarappa, M. J.; Saraph, A.; Joshi, A.; Mog-
ridge, J.; Kane, R. S. J. Polym. Sci. Part A: Polym. Chem. 2008,
46, 7249–7257.
5 Chiu, D. T.; Chan, Y. H.; Wu, C. F.; Ye, F. M.; Jin, Y. H.; Smith,
P. B. Anal. Chem. 2011, 83, 1448–1455.
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2012, 50, 2219–2226
2225