COMMUNICATIONS
[6] a) A. Karpas, G. W. J. Fleet, R. A. Dewk, S. Petrusson, S. K. Man-
goong, J. G. Ramsden, G. S. Jacob, T. W. Rademacher, Proc. Nat.
Acad. Sci. USA 1988, 85, 9229 9233; b) G. Legler in Iminosugars as
glycosidase inhibitors: Nojirimycin and beyond (Ed.: A. E. St¸tz),
Wiley-VCH, Weinheim, 1999, pp. 31 67.
[7] R. J. Nash, E. A. Bell, G. W. J. Fleet, R. H. Jones, J. M. Williams, J.
Chem. Soc. Chem. Commun. 1985,738 740.
[8] I. Fleming, S. K. Ghosh, J. Chem. Soc. Perkin Trans. 1998, 1, 2711
2720.
Convergent Synthesis of Silylated Allylic
Alcohols by a Stereoselective Domino,
Sequential Radical-Coupling Reaction**
Shigeru Yamago,* Masaki Miyoshi, Hiroshi Miyazoe,
and Junichi Yoshida*
The construction of multiple carbon carbon bonds by
tandem reactions represents an efficient approach to the
synthesis of complex molecular structures from simple
organic building blocks.[1] Although radical-mediated intra-
molecular tandem cyclization exemplifies such an approach,[2]
extensions to the intermolecular reaction (Scheme 1; I× III×)
have been severely limited, and require careful choice of
[9] D. Seebach, H.-F. Chow, R. F. W. Jackson, M. A. Sutter, S. Thaisri-
vongs, J. Zimmermann, Liebigs Ann. Chem. 1986, 1281 1308.
[10] M. Nakatsuka, J. A. Ragan, T. Sammakia, D. B. Smith, D. E. Uehling,
S. L. Schreiber, J. Am. Chem. Soc. 1989, 1112, 5583 5597.
[11] a) A. Balog, D. Meng, T. Kamenecka, P. Bertinato, D.-S. Su, E. J.
Sorensen, S. J. Danishefsky, Angew. Chem. 1996, 108, 2976 2978;
Angew. Chem. Int. Ed. Engl. 1996, 35, 2801 2803; b) D. Meng, P.
Bertinato, A. Balog, D.-S. Su, T. Kamenecka, E. J. Sorensen, S. J.
Danishefsky, J. Am. Chem. Soc. 1997, 119, 10073 10092; c) Z. Yang,
Y. He, D. Vourloumis, H. Vallberg, K. C. Nicolaou, Angew. Chem.
1997, 109, 170 173; Angew. Chem. Int. Ed. Engl. 1997, 36, 166 168;
d) K. C. Nicolaou, N. Winssinger, J. Pastor, S. Ninkovic, F. Sarabia, Y.
He, D. Vourlomis, Z. Yang, T. Li, P. Giannakakou, E. Hamel, Nature
1997, 387, 268 272; e) K. C. Nicolaou, S. Ninkovic, F. Sarabia, D.
Vourloumis, Y. He, H. Vallberg, M. R. V. Finlay, Z. Yang, J. Am.
Chem. Soc. 1997, 119, 7974 7991; f) D. Schinzer, A. Limberg, A.
Bauer, O. M. Bˆhm, M. Cordes, Angew. Chem. 1997, 109, 543 544;
Angew. Chem. Int. Ed. Engl. 1997, 36, 523 524; g) D. Schinzer, A.
Bauer, O. M. Bˆhm, A. Limberg, M. Cordes, Chem. Eur. J. 1999, 5,
2483 2491; h) S. A. May, P. A. Grieco, Chem. Commun. 1998, 1597
1598; i) J. D. White, R. G. Carter, K. F. Sundermann, J. Org. Chem.
1999, 64, 684 685; j) J. D. White, R. G. Carter, K. F. Sundermann, M.
Wartmann, J. Am. Chem. Soc. 2001, 123, 5407 5413; k) B. Zhu, J. S.
Panek, Eur. J. Org. Chem. 2001, 1701 1714; l) B. Zhu, J. S. Panek,
Org. Lett. 2000, 2, 2575 2578; m) D. Sawada, M. Kanai, M. Shibasaki,
J. Am. Chem. Soc. 2000, 122, 10521 10532; n) D. Sawada, M.
Shibasaki, Angew. Chem. 2000, 112, 215 219; Angew. Chem. Int. Ed.
2000, 39, 209 213; o) J. W. Bode, E. M. Carreira, J. Am. Chem. Soc.
2001, 123, 3611 3612; p) S. C. Sinha, C. F. Barbas III, R. A. Lerner,
Proc. Natl. Acad. Sci. USA 1998, 95, 14603 14608; q) S. C. Sinha, J.
Sun, G. P. Miller, M. Wartmann, R. A. Lerner, Chem. Eur. J. 2001, 7,
1691 1702; r) L. Tang, S. Shah, L. Chung, J. Carney, L. Katz, C.
Khosla, B. Julien, Science 2000, 287, 640 642; s) A. F¸rstner, C.
Mathes, K. Grela, Chem. Commun. 2001, 12, 1057 1059.
[12] a) G. Hˆfle, N. Bedorf, H. Steinmetz, D. Schomburg, K. Gerth, H.
Reichenbach, Angew. Chem. 1996, 108, 1671 1673; Angew. Chem.
Int. Ed. Engl. 1996, 35, 1567 1569; b) K. C. Nicolaou, F. Roschangar,
D. Vourloumis, Angew. Chem. 1998, 110, 2092 2118; Angew. Chem.
Int. Ed. 1998, 37, 2014 2045.
[13] T. D. Machajewski, C.-H. Wong, Synthesis 1999, 1469 1472.
[14] T. Kametani, T. Katoh, J. Fujio, I. Nogiwa, M. Tsubuki, T. Honda, J.
Org. Chem. 1988, 53, 1982 1991.
[15] D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155 4156.
[16] S. N. Huckin, L. Weiler, J. Am. Chem. Soc. 1974, 96, 1082 1087.
[17] D. A. Evans, K. T. Chapman, E. M. Carreria, J. Am. Chem. Soc. 1988,
110, 3560 3578.
[18] G. Marzoni, J. Heterocycl. Chem. 1986, 23, 577 580.
[19] K. C. Nicolaou, E. W. Yue, S. L. Greca, A. Nadin, Z. Yang, J. E.
Leresche, T. Tsuri, Y. Naniwa, F. D. Riccardis, Chem. Eur. J. 1995, 1,
467 494.
Scheme 1. A X: Radical precursor; B, C: radical acceptors.
coupling partners.[3] This limitation could be attributed to the
difficulty in the selective reaction of the transient radicals, for
example, I×, II×, and III×, with certain coupling partners in
radical chain reactions. The problem might be solved if we
could prepare the radical intermediates I×, II×, and III× as their
radical precursors I, II, and III, and subsequently couple them
with radical acceptors in an atom- or group-transfer manner
(Scheme 1).[4] The reaction would then be an iterative atom-
or group-transfer radical reaction.[5] However, there have
been no reports of such transformations, with the exception of
living radical polymerization, in which the same alkenes react
consecutively.[6]
We have reported the group-transfer coupling of tri-
methylsilyl phenyl telluride (1), carbonyl compounds, and
isonitriles, which involves the selective carbon carbon bond
formation of the a-siloxy radical 2 with isonitriles.[7] It should
be noted that the reaction of silyl tellurides with carbonyl
compounds in the absence of isonitrile afforded the a-siloxy
telluride 3. This unique feature of the reaction prompted us to
investigate alkynes as a third coupling partner (Scheme 2).
Here we report a novel group-transfer coupling of 1, carbonyl
compounds, and alkynes to give the silylated allylic alcohol 5.
As the product also possesses a reactive carbon tellurium
bond, radical-mediated transformation via the vinyl radical 4
[20] G. Stork, K. Zhao, Tetrahedron Lett. 1989, 30, 2173 2174.
[21] M. Yamaguchi, J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, Bull.
Chem. Soc. Jpn. 1979, 52, 1989.
[22] K. Horita, T. Yoshioka, T. Tanaka, Y. Oikawa, O. Yonemitsu,
Tetrahedron 1986, 42, 3021 3028.
[*] Prof. S. Yamago, Prof. J. Yoshida, M. Miyoshi, Dr. H. Miyazoe
Department of Synthetic Chemistry and Biological Chemistry
Graduate School of Engineering
Kyoto University, Kyoto 606-8501 (Japan)
Fax : (81)75-753-5911
[23] R. W. Murray, R. Jeyaraman, J. Org. Chem. 1985, 50, 2847 2853.
[**] This work was partly supported by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Science, Sports, and
Culture, Japan. We thank Dr. K. Itami for the X-ray analysis.
Supporting information for this article is available on the WWW under
Angew. Chem. Int. Ed. 2002, 41, No. 8
¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002
1433-7851/02/4108-1407 $ 20.00+.50/0
1407