Journal of the American Chemical Society
Communication
(10) For palladium-catalyzed asymmetric alcoholysis of terminal
aziridines, see: Leung, W.-H.; Mak, W.-L.; Chan, E. Y. Y.; Lam, T. C.
H.; Lee, W.-S.; Kwong, H.-L.; Yeung, L.-L. Synlett 2002, 1688.
(11) For regiodivergent kinetic resolution of terminal aziridines with
trimethylsilyl azide, see: Wu, B.; Parquette, J. R.; RajanBabu, T. V.
Science 2009, 326, 1662.
(12) Wu, J.; Hou, X.-L.; Dai, L.-X. J. Org. Chem. 2000, 65, 1344.
(13) Gawronski, J.; Wascinska, N.; Gajewy, J. Chem. Rev. 2008, 108,
5227.
Graduate Schools “Integrative Graduate Education and
Research Program in Green Natural Sciences” in Nagoya
University.
REFERENCES
■
(1) Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. Chem. Rev. 1993,
93, 1371.
(2) (a) Rendler, S.; Oestreich, M. Synthesis 2005, 1727. (b) Orito, Y.;
Nakajima, M. Synthesis 2006, 1391. (c) Benaglia, M.; Guizzetti, S.;
Pignataro, L. Coord. Chem. Rev. 2008, 252, 492.
(14) For selected examples, see: (a) Michida, M.; Mukaiyama, T.
Chem. Lett. 2008, 37, 890. (b) Michida, M.; Mukaiyama, T. Chem.
Asian J. 2008, 3, 1592.
(3) For examples of asymmetric ring openings of epoxides with
stoichiometric or catalytic amounts of chiral Lewis acid halides, see:
(a) Joshi, N. N.; Srebnik, M.; Brown, H. C. J. Am. Chem. Soc. 1988,
110, 6246. (b) Naruse, Y.; Esaki, T.; Yamamoto, H. Tetrahedron 1988,
44, 4747. (c) Nugent, W. A. J. Am. Chem. Soc. 1998, 120, 7139.
(d) Bruns, S.; Haufe, G. Tetrahedron: Asymmetry 1999, 10, 1563. For
recent reports on asymmetric nucleophilic fluorinations, see:
(e) Kalow, J. A.; Doyle, A. G. J. Am. Chem. Soc. 2010, 132, 3268.
(f) Katcher, M. H.; Doyle, A. G. J. Am. Chem. Soc. 2010, 132, 17402.
For asymmetric dichlorination of cyclopropanecarbaldehyde, see:
(g) Sparr, C.; Gilmour, R. Angew. Chem., Int. Ed. 2011, 50, 8391.
(4) For a single example of asymmetric chloride ring opening of
meso aziridines, in which hydrogen chloride was employed as a
chloride source, see: Mita, T.; Jacobsen, E. N. Synlett 2009, 1680.
(5) (a) Ibrahim, H.; Togni, A. Chem. Commun. 2004, 1147. (b) Ueda,
M.; Kano, T.; Maruoka, K. Org. Biomol. Chem. 2009, 7, 2005.
(c) Shibatomi, K. Synthesis 2010, 2679.
(6) (a) Denmark, S. E.; Barsanti, P. A.; Wong, K.-T.; Stavenger, R. A.
J. Org. Chem. 1998, 63, 2428. (b) Tao, B.; Lo, M. M.-C.; Fu, G. C. J.
Am. Chem. Soc. 2001, 123, 353. (c) Nakajima, M.; Saito, M.; Uemura,
M.; Hashimoto, S. Tetrahedron Lett. 2002, 43, 8827. (d) Paek, S. H.;
Shim, S. C.; Cho, C. S.; Kim, T.-J. Synlett 2003, 849. (e) Tokuoka, E.;
Kotani, S.; Matsunaga, H.; Ishizuka, T.; Hashimoto, S.; Nakajima, M.
Tetrahedron: Asymmetry 2005, 16, 2391. (f) Takenaka, N.;
Sarangthem, R. S.; Captain, B. Angew. Chem., Int. Ed. 2008, 47,
9708. (g) Chelucci, G.; Baldino, S.; Pinna, G. A.; Benaglia, M.; Buffa,
L.; Guizzetti, S. Tetrahedron 2008, 64, 7574. (h) Pu, X.; Qi, X.; Ready,
J. M. J. Am. Chem. Soc. 2009, 131, 10364. (i) Malkov, A. V.; Gordon,
(15) For details, see the Supporting Information.
(16) (a) Damrauer, R.; Burggraf, L. W.; Davis, L. P.; Gordon, M. S. J.
Am. Chem. Soc. 1988, 110, 6601. (b) Hao, C.; Kaspar, J. D.; Check, C.
E.; Lobring, K. C.; Gilbert, T. M.; Sunderlin, L. S. J. Phys. Chem. A
2005, 109, 2026.
(17) The reactions with aziridine bearing p-toluenesulfonyl group
(Ts) exhibited a similar level of reaction efficiency and slightly lower
enantioselectivity. For details, see Table S1 in the Supporting
Information.
(18) To interrogate the possibility of concomitant generation of
hydrogen chloride (HCl) and its participation as a reactive promoter,
the reaction of 2a was conducted with 10 mol% of a proton scavenger,
2,6-di-tert-butylpyridine, under otherwise identical conditions with
those of entry 7 in Table 1; this revealed that the differences in
chemical yield and ee were marginal and thus HCl was irrelevant to
the present catalytic system, even if it was generated.
(19) The present system seems to be ineffective for aziridines having
aromatic substituents. For instance, the reaction of cis-stilbene-derived
aziridine proceeded sluggishly even at 0 °C, resulting in the formation
of the desired product in 14% yield with 48% ee after 24 h.
(20) The chlorinated product was not obtained even in the reaction
with 30 mol% of 1f·Cl.
(21) S = kfast/kslow = In[(1 − C/100)(1 − ee/100)]/In[(1 − C/100)
(1 + ee/100)] (C = conversion, ee = enantiomeric excess of recovered
4 or 6).
(22) The ring opening of styrene-derived aziridine showed an
opposite regioselectivity and diminished stereoselectivity. For details,
see the Supporting Information.
(23) (a) Morton, D.; Pearson, D.; Fielda, R. A.; Stockman, R. A.
Chem. Commun. 2006, 1833. (b) Colpaert, F.; Mangelinckx, S.;
Leemans, E.; Denolf, B.; De Kimpe, N. Org. Biomol. Chem. 2010, 8,
3251.
(24) The absolute configuration of 7a was determined to be R by X-
ray diffraction analysis. The minor regioisomers 8 were also obtained
in enantioenriched form (8a: 64% ee, 8b: 62% ee, 8c: 80% ee). These
products would arise from the stereo-invertive ring opening of (R)-
aziridines, and the stereochemistry of 8 shown in Scheme 4 is based on
this assumption. For stereo-invertive nucleophilic substitution at the
disubstituted carbon of aziridine, see: Forbeck, E. M.; Evans, C. D.;
Gilleran, J. A.; Li, P.; Joullie, M. M. J. Am. Chem. Soc. 2007, 129, 14463.
̂ ̂
́
M. R.; Stoncius, S.; Hussain, J.; Kocovsky, P. Org. Lett. 2009, 11, 5390.
(j) Denmark, S. E.; Barsanti, P. A.; Beutner, G. L.; Wilson, T. W. Adv.
Synth. Catal. 2007, 349, 567.
(7) For asymmetric ring opening of terminal aziridine using a
stoichiometric amount of chiral amine and trimethysilyl cyanide or
iodide, see: Minakata, S.; Murakami, Y.; Satake, M.; Hidaka, I.; Okada,
Y.; Komatsu, M. Org. Biomol. Chem. 2009, 7, 641.
(8) Ohmatsu, K.; Kiyokawa, M.; Ooi, T. J. Am. Chem. Soc. 2011, 133,
1307.
(9) For representative references of desymmetrization of aziridines
with azide, see: (a) Li, Z.; Fernandez, M.; Jacobsen, E. N. Org. Lett.
́
1999, 1, 1611. (b) Fukuta, Y.; Mita, T.; Fukuda, N.; Kanai, M.;
Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 6312. (c) Rowland, E. B.;
Rowland, G. B.; Rivera-Otero, E.; Antilla, J. C. J. Am. Chem. Soc. 2007,
129, 12084. (d) Nakamura, S.; Hayashi, M.; Kamada, Y.; Sasaki, R.;
Hiramatsu, Y.; Shibata, N.; Toru, T. Tetrahedron Lett. 2010, 51, 3820.
With cyanide, see: (e) Mita, T.; Fujimori, I.; Wada, R.; Wen, J.; Kanai,
M.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 11252. (f) Fujimori, I.;
Mita, T.; Maki, K.; Shiro, M.; Sato, A.; Furusho, S.; Kanai, M.;
Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 16438. (g) Wu, B.; Gallucci,
J. C.; Parquette, J. R.; RajanBabu, T. V. Angew. Chem., Int. Ed. 2009,
48, 1126. With other nucleophiles, see: (h) Muller, P.; Nury, P. Org.
̈
Lett. 1999, 1, 439. (i) Arai, K.; Lucarini, S.; Salter, M. M.; Ohta, K.;
Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2007, 129, 8103.
(j) Della Sala, G.; Lattanzi, A. Org. Lett. 2009, 11, 3330. (k) Larson, S.
E.; Baso, J. C.; Li, G.; Antilla, J. C. Org. Lett. 2009, 11, 5186. (l) Xu, Y.;
Lin, L.; Kanai, M.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2011,
133, 5791.
8797
dx.doi.org/10.1021/ja3028668 | J. Am. Chem. Soc. 2012, 134, 8794−8797