Journal of the American Chemical Society
Communication
(3) For recent examples of enantioselective N−H insertion reactions
of carbenoids, see: (a) Bachmann, S.; Fielenbach, D.; Jorgensen, K. A.
Org. Biomol. Chem. 2004, 2, 3044. (b) Lee, E. C.; Fu, G. C. J. Am.
Chem. Soc. 2007, 129, 12066. (c) Liu, B.; Zhu, S. F.; Zhang, W.; Chen,
C.; Zhou, Q. L. J. Am. Chem. Soc. 2007, 129, 5834. (d) Hou, Z.; Wang,
J.; He, P.; Wang, J.; Qin, B.; Liu, X.; Lin, L.; Feng, X. Angew. Chem., Int.
Ed. 2010, 49, 4763. (e) Xu, B.; Zhu, S. F.; Xie, X. L.; She, J. J.; Zhou,
Q. L. Angew. Chem., Int. Ed. 2011, 50, 11483.
Scheme 4. Evidence for HBD-Generated Carbene:
Rearrangement to Acyl Nitroso Species 9 under Dilute
Reaction Conditions
(4) For reviews on urea and thiourea catalysis, please see:
(a) Berkessel, A.; Groger, H. Asymmetric Organocatalysis; Wiley-
VHC: Weinheim, 2005. (b) Takemoto, Y. Chem. Pharm. Bull. 2010,
58, 593. (c) Connon, S. J.; Kavanagh, S. A.; Piccinini, A. Org. Biomol.
Chem. 2008, 6, 1339. (d) Zhang, Z. G.; Schreiner, P. R. Chem. Soc. Rev.
2009, 38, 1187. (e) Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299.
(5) For examples of nitroalkene activation with ureas and thioureas,
see: (a) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X. N.; Takemoto, Y.
J. Am. Chem. Soc. 2005, 127, 119. (b) Herrera, R. P.; Sgarzani, V.;
Bernardi, L.; Ricci, A. Angew. Chem., Int. Ed. 2005, 44, 6576.
(c) Kimmel, K. L.; Weaver, J. D.; Ellman, J. A. Chem. Sci. 2012, 3, 121.
(6) For the preparation of 5, see: Chiara, J. L.; Suarez, J. R. Adv.
Synth. Catal. 2011, 353, 575.
(7) For examples of thiourea decomposition at elevated temper-
atures, see: (a) Ishihara, K.; Niwa, M.; Kosugi, Y. Org. Lett. 2008, 10,
2187. (b) Kirsten, M.; Rehbein, J.; Hiersemann, M.; Strassner, T. J.
Org. Chem. 2007, 72, 4001.
(8) (a) So, S. S; Burkett, J. A.; Mattson, A. E. Org. Lett. 2011, 13, 716.
(b) So, S. S.; Auvil, T. J.; Garza, V. J. Org. Lett. 2012, 14, 444.
(9) For pioneering reports of internal Lewis acid assisted ureas in the
context of molecular recognition see: (a) Hughes, M. P.; Shang, M. Y.;
Smith, B. D. J. Org. Chem. 1996, 61, 4510. (b) Hughes, M. P.; Smith,
B. D. J. Org. Chem. 1997, 62, 4492.
absence of an opportunity for rapid participation in an N−H
insertion reaction, such as dilute reaction conditions. These
results point to the potential involvement of an HBD-generated
carbene species (II) in the reaction pathway.
In summary, ureas operate as catalysts for the three-
component coupling of nitrodiazoesters, amines, and nucleo-
philes. This report includes evidence for the first organo-
catalytic activation of diazo compounds for participation in N−
H insertion reactions; the reaction pathway may proceed
through an HBD-stabilized carbene. Results of ongoing studies
in our laboratory exploring the full potential of HBD-activation
of diazo compounds, including the development of enantiose-
lective organocatalytic N−H insertion reactions, as new
synthetic tools will be reported as soon as possible.
(10) For early work demonstrating that diaryl ureas with
trifluoromethyl substituents have enhanced activity, please see:
(a) Schreiner, P. R.; Wittkopp, A. Org. Lett. 2002, 4, 217. (b) Wittkopp,
A.; Schreiner, P. R. Chem.Eur. J. 2003, 9, 407.
ASSOCIATED CONTENT
* Supporting Information
■
(11) On the rare occasion α-amino α-nitro esters are reported, they
are typically prepared at low temperature and contain electron-
withdrawing groups on the amine: Ji, B.-C.; Liu, Y.-L.; Zhao, X.-L.;
Guo, Y.-L.; Wang, H.-Y.; Zhou, J. Org. Biomol. Chem. 2012, 10, 1158.
(12) For examples of carbene generation from α-nitro-α-diazo
carbonyl compounds, see: (a) Shollkopf, U.; Tonne, P. Leibigs Ann.
Chem. 1971, 753, 135. (b) O’Bannon, P. E.; Dailey, W. P. Tetrahedron
Lett. 1988, 29, 5719. (c) O’Bannon, P. E.; Dailey, W. P. J. Org. Chem.
1989, 54, 3096. (d) Charette, A. B.; Wurz, R. P.; Ollevier, T. Helv.
Chim. Acta 2002, 85, 4468. (e) Wurz, R. P.; Charette, A. B. J. Org.
Chem. 2004, 69, 1262. (f) Zhu, S.; Perman, J. A.; Zhange, X. P. Angew.
Chem., Int. Ed. 2008, 47, 8460. (g) Lindsay, V. N.; Lin, W.; Charette,
A. B. J. Am. Chem. Soc. 2009, 131, 16383. (h) Vanier, S. F.; Larouche,
G.; Wurz, R. P.; Charette, A. B. Org. Lett. 2010, 12, 672.
S
Experimental procedures and spectral data for all new
compounds. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Support for this work has been provided by the OSU
Department of Chemistry. We acknowledge the Ohio Bio-
Products Innovations Center (OBIC) for seminal support of
the OSU mass spectrometry facility. Dr. Judith Gallucci (OSU)
is thanked for expert crystallographic analysis.
(13) For reactions of acyl nitroso compounds with nucleophilic
amines, see: Atkinson, R. N.; Storey, B. M.; King, S. B. Tetrahedron
Lett. 1996, 37, 9287.
REFERENCES
■
(1) (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Methods for
Organic Synthesis with Diazo Compounds; Wiley: New York, 1998.
(b) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861.
(c) Shang, Z.; Wang, J. Tetrahedron 2008, 64, 6577.
(2) For a short review, see: Moody, C. J. Angew. Chem., Int. Ed. 2007,
46, 9148. For examples, see: (a) Curtius, T. J. Prakt. Chem. 1888, 38,
396. (b) Yates, P. J. Am. Chem. Soc. 1952, 74, 5376. (c) Saegusa, T.;
Ito, Y.; Kobayashi, S.; Hirota, K.; Shimizu, T. Tetrahedron Lett. 1966, 7,
6131. (d) Nicoud, J. F.; Kagan, H. B. Tetrahedron Lett. 1971, 12, 2065.
(e) Paulissen, R.; Hayez, E.; Hubert, A. J.; Teyssie, P. Tetrahedron Lett.
1974, 15, 607. (f) Ratcliffe, R. W.; Salzman, T. N.; Christensen, B. G.
Tetrahedron Lett. 1980, 21, 31. (g) Moody, C. J.; Bagley, M. C. J.
Chem. Soc., Perkin Trans. 1 1998, 601.
D
dx.doi.org/10.1021/ja3031054 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX