LETTER
Cross-Coupling Reaction of Alkynes with Aryl Iodides and Vinyl Halides
447
(4) For reviews, see: (a) Heravi, M. M.; Sadjadi, S. Tetrahedron
2009, 65, 7761. (b) Chinchilla, R.; Nájera, C. Chem. Rev.
2007, 107, 874. (c) Doucet, H.; Hierso, J.-C. Angew. Chem.
Int. Ed. 2007, 46, 834. (d) Nicolaou, K. C.; Bulger, P. G.;
Sarlah, D. Angew. Chem. Int. Ed. 2005, 44, 4442.
(e) Negishi, E.; Anastasia, L. Chem. Rev. 2003, 103, 1979.
(f) Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41,
4176. (g) Siemsen, P.; Livingston, R. C.; Diederich, F.
Angew. Chem. Int. Ed. 2000, 39, 2632. (h) Martin, R. E.;
Diederich, F. Angew. Chem. Int. Ed. 1999, 38, 1350.
(5) Okuro, K.; Furuune, M.; Enna, M.; Miura, M.; Nomura, M.
J. Org. Chem. 1993, 58, 4716.
(24) General Procedure for the Synthesis of Compounds 3a–e
A sealable vial equipped with a magnetic stir bar was
charged with Cs2CO3 (652 mg, 2.0 mmol) and Cu2O (7.0 mg,
0.05 mmol) under a nitrogen atmosphere. The aperture of the
vial was then covered with a rubber septum. Under a
nitrogen atmosphere, aryl alkyne 1 (1.5 mmol), aryl iodide 2
(1.0 mmol), and DMF (0.5 mL) were added by syringe. The
septum was then replaced by a screw cap containing a
Teflon-coated septum, and the reaction vessel was placed at
135 °C. After stirring at this temperature for 24 h, the
heterogeneous mixture was cooled to r.t. and diluted with
EtOAc (20 mL). The resulting solution was filtered through
a pad of silica gel, then washed with EtOAc (20 mL), and
concentrated to give the crude material which was then
purified by column chromatography on silica gel to yield
alkyne 3.
(6) Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Org. Lett.
2001, 3, 4315.
(7) Saejueng, P.; Bates, C. G.; Venkataraman, D. Synthesis
2005, 1706.
(8) Ma, D.; Liu, F. Chem. Commun. 2004, 1934.
(9) Wang, Y. F.; Deng, W.; Liu, L.; Guo, Q. X. Chin. Chem.
Lett. 2005, 16, 1197.
(10) Li, J.-H.; Li, J.-L.; Wang, D.-P.; Pi, S.-F.; Xie, Y.-X.; Zhang,
M.-B.; Hu, X.-C. J. Org. Chem. 2007, 72, 2053.
(11) Xie, Y.-X.; Deng, C.-L.; Pi, S.-F.; Li, J.-H.; Yin, D.-L. Chin.
J. Chem. 2006, 24, 1290.
Data for Five Representative Examples
Diphenylacetylene (3a)25
Following the general procedure, using Cs2CO3 (652 mg, 2.0
mmol) and Cu2O (7.0 mg, 0.05 mmol) in DMF (0.5 mL),
then purified by column chromatography (SiO2, hexane) to
provide 3a as a white solid (168 mg, 94% yield); mp 58–59
°C (lit.25 60–61 °C). 1H NMR (400 MHz, CDCl3): δ = 7.26–
7.41 (m, 6 H), 7.56–7.60 (m, 4 H) ppm. 13C NMR (100 MHz,
CDCl3): δ = 89.4, 123.2, 128.2, 128.3, 131.6 ppm.
Phenyl-p-tolylacetylene (3b)25
(12) Monnier, F.; Turtaut, F.; Duroure, L.; Taillefer, M. Org. Lett.
2008, 10, 3203.
(13) Zuidema, E.; Bolm, C. Chem. Eur. J. 2010, 16, 4181.
(14) For more selected examples, see: (a) Hosseinzadeh, R.;
Mohadjerani, M.; Tavakoli, R. Synth. Commun. 2010, 40,
282. (b) Thakur, K. G.; Jaseer, E. A.; Naidu, A. B.; Sekar, G.
Tetrahedron Lett. 2009, 50, 2865. (c) Guan, J. T.; Yu, G.-A.;
Chen, L.; Weng, T. Q.; Yuan, J. J.; Liu, S. H. Appl.
Organomet. Chem. 2009, 23, 75. (d) Mao, J.; Guo, J.; Ji, S.-
J. J. Mol. Catal. A: Chem. 2008, 284, 85. (e) Tang, B.-X.;
Wang, F.; Li, J.-H.; Xie, Y.-X.; Zhang, M.-B. J. Org. Chem.
2007, 72, 6294. (f) Colacino, E.; Daïch, L.; Martinez, J.;
Lamaty, F. Synlett 2007, 1279. (g) Thathagar, M. B.;
Beckers, J.; Rothenberg, G. Green Chem. 2004, 6, 215.
(h) Liu, Y.; Yang, J.; Bao, W. Eur. J. Org. Chem. 2009,
5317. (i) Xie, X.; Xu, X. B.; Li, H. F.; Xu, X. L.; Yang, J. Y.;
Li, Y. Z. Adv. Synth. Catal. 2009, 351, 1263. (j) Wu, M.;
Mao, J.; Guo, J.; Ji, S. Eur. J. Org. Chem. 2008, 4050.
(k) Bates, C. G.; Saejueng, P.; Venkataraman, D. Org. Lett.
2004, 6, 1441. (l) Okuro, K.; Furuune, M.; Enna, M.; Miura,
M.; Nomura, M. J. Org. Chem. 1993, 58, 4716. (m) Okuro,
K.; Furuune, M.; Miura, M.; Nomura, M. Tetrahedron Lett.
1992, 33, 5363.
Following the general procedure, using phenylacetylene
(0.0167 mL, 1.5 mmol) and 4-iodotoluene (218 mg, 1.0
mmol), then purified by column chromatography (SiO2,
hexane) to provide 3b as a white solid (181 mg, 94% yield);
mp 69–70 °C (lit.25 71–72.5 °C). 1H NMR (400 MHz,
CDCl3): δ = 2.17 (s, 3 H), 6.96–6.97 (m, 1 H), 6.14–6.16 (m,
2 H), 7.28–7.38 (m, 2 H), 7.37–7.39 (m, 2 H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 21.5, 88.7, 89.5, 120.1, 123.4, 128.0,
128.3, 129.1, 131.5, 131.5, 138.4 ppm.
4-(Phenylethynyl)aniline (3c)19c
Following the general procedure, using phenylacetylene
(0.167 mL, 1.5 mmol) and 4-iodoaniline (218 mg, 1.0
mmol), then purified by column chromatography (SiO2,
hexane–EtOAc = 9:1) provide 3c as a brown solid (166 mg,
86% yield); mp 123–124 °C (lit.19c 126–127 °C). 1H NMR
(400 MHz, CDCl3): δ = 3.75 (br s, 2 H), 6.57 (d, J = 8.0 Hz,
2 H), 7.28–7.33 (m, 5 H), 7.48–7.50 (m, 2 H) ppm. 13C NMR
(100 MHz, CDCl3): δ = 87.3, 90.1, 112.5, 114.7, 123.8,
127.6, 128.2, 131.3, 132.9, 146.6 ppm.
(4-Methoxyphenyl)phenylacetylene (3d)25
(15) Mao, J.; Xie, G.; Wu, M.; Guo, J.; Jia, S. Adv. Synth. Catal.
2008, 350, 2477.
(16) Thathagar, M. B.; Beckers, J.; Rothenberg, G. Green Chem.
2004, 6, 215.
(17) Biffis, A.; Scattolin, E.; Ravasio, N.; Zaccheria, F.
Tetrahedron Lett. 2007, 48, 8761.
(18) Yuan, Y.; Zhu, H.; Zhao, D.; Zhang, L. Synthesis 2011,
1792.
Following the general procedure, using phenylacetylene
(0.083 mL, 0.75 mmol) and 4-iodoanisole (120 mg, 0.5
mmol), then purified by column chromatography (SiO2,
hexane–EtOAc = 10:1) to provide 3d as a white solid (92
mg, 88% yield); mp 55–57 °C (lit.25 58–60 °C). 1H NMR
(400 MHz, CDCl3): δ = 3.75 (s, 3 H), 6.83–6.85 (m, 2 H),
7.28–7.31 (m, 3 H), 7.44–7.52 (m, 4 H) ppm. 13C NMR (100
MHz, CDCl3): δ = 55.1, 88.0, 89.4, 113.9, 115.3, 123.5,
127.9, 128.2, 131.4, 133.0, 159.6 ppm.
(19) Gonda, Z.; Tolnai, G. L.; Novák, Z. Chem. Eur. J. 2010, 16,
11822.
2-(Phenylethynyl)anisole (3e)19c
(20) Zou, L.-H.; Johansson, A. J.; Zuidema, E.; Bolm, C. Chem.
Eur. J. 2013, 19, 8144.
Following the general procedure, using phenylacetylene
(0.167 mL, 1.5 mmol) and 2-iodoanisole (0.130 mL, 1.0
mmol), then purified by column chromatography (SiO2,
hexane–EtOAc = 9:1) to provide 3e as a yellow oil (132 mg,
64% yield). 1H NMR (400 MHz, CDCl3): δ = 3.86 (s, 3 H),
6.84–6.93 (m, 2 H), 7.24–7.33 (m, 4 H), 7.48–7.50 (m, 1 H),
7.54–7.57 (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3):
δ = 55.7, 85.7, 93.3, 110.6, 112.3, 120.4, 123.5, 128.0,
128.2, 129.7, 131.5, 133.5, 159.9 ppm.
(21) Li, T.; Qu, X.; Xie, G.; Mao, J. Chem. Asian J. 2011, 6, 1325.
(22) (a) Tsai, W.-T.; Lin, Y.-Y.; Wang, Y.-J.; Lee, C.-F.
Synthesis 2012, 44, 1507. (b) Lin, Y.-Y.; Wang, Y.-J.;
Cheng, J.-H.; Lee, C.-F. Synlett 2012, 23, 930. (c) Lin,
C.-H.; Wang, Y.-J.; Lee, C.-F. Eur. J. Org. Chem. 2010,
4368.
(23) ICP-MS analysis showed 2 ppb of palladium in Cu2O; no
palladium has been detected in Cs2CO3 and phenylacetylene.
(25) Li, P.; Wang, L.; Li, H. Tetrahedron 2005, 61, 8633.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2014, 25, 443–447