Fig. 1 Molecular structures of (a) 2, (b) 3, and (c) 4 with selective atom labelling and hydrogen atoms omitted for clarity. Selected bond lengths
(A): (a) B(1)–C(37) 1.581(3), B(1)–N(1) 1.441(3), B(1)–N(2) 1.438(3); (b) B(1)–C(39) 1.573(4), B(1)–N(1) 1.443(4), B(1)–N(2) 1.441(4); (c)
B(1)–Li(1) 2.285(4), B(1)–N(1) 1.483(3), B(1)–N(2) 1.482(3), Li(1)–O(1) 1.919(4), Li(1)–O(2) 1.952(4).
in 85% (av.) yield. The spectroscopic and analytical data for 4
7
Dalton Trans., 2001, 2437; (j) Y. Guari, S. Sabo-Etienne and
B. Chaudret, Eur. J. Inorg. Chem., 1999, 1047.
3 (a) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy
and J. F. Hartwig, Chem. Rev., 2010, 110, 890; (b) J. F. Hartwig,
Chem. Soc. Rev., 2011, 40, 1992.
4 D. N. Coventry, A. S. Batsanov, A. E. Goeta, J. A. K. Howard,
T. B. Marder and R. N. Perutz, Chem. Commun., 2005, 2172.
5 L. D. Field, S. Sternhell and H. V. Wilton, J. Chem. Educ., 1999,
76, 1246.
6 T. Ishiyama and N. Miyaura, Chem. Rec., 2004, 3, 271.
7 (a) A. DelGrosso, P. J. Singleton, C. A. Muryn and M. J. Ingleson,
Angew. Chem., Int. Ed., 2011, 50, 2102; (b) A. Del Grosso, M. D. Helm,
S. A. Solomon, D. Caras-Quintero and M. J. Ingelson, Chem. Commun.,
2011, 47, 12459.
8 W. Clegg, S. H. Dale, E. Hevia, L. M. Hogg, G. W. Honeyman,
R. E. Mulvey and C. T. O’Hara, Angew. Chem., Int. Ed., 2006, 45, 6548.
9 (a) T. Wenderski, K. M. Light, D. Ogrin, S. G. Bott and
C. J. Harlan, Tetrahedron Lett., 2004, 45, 6851; (b) J.-Y. Liu,
Y. Zheng, Y.-G. Li, L. Pan, Y.-S. Li and N.-H. Hu, J. Organomet.
Chem., 2005, 690, 1233.
are consistent with its formulation and the 11B and Li NMR
spectra reveal broad singlets at 51.0 and 0.6 ppm, respectively.10
The crystal structure of 4 is shown in Fig. 1 and reveals a trigonal
planar lithium centre coordinated by two THF molecules and
the boryl PDAB ligand. The B–Li bond length was found to be
2.285(4) A which falls in the range of known B–Li bond
distances.16
The combined yield of 2 and 3 from the lithium reaction is
80% and the high-sodium lithium reaction produces 4 in 85%
yield. The switchable nature of this reaction is therefore clear-cut,
clearly mediated by the nature of the lithium metal employed,
and entirely controllable. To further confirm this we reacted
1 with the more reactive alkali metal potassium and isolated the
hydroborane compound PDABH (5) with an average yield
of 82%.10 Presumably a boryl potassium complex is formed
transiently, but the putative B–K bond, which would be expected
to be more ionic than the B–Li bond in 4, must be too reactive
and thus abstracts a proton from solvent to give 5.
10 See the Supporting Informationz for full details.
11 From a search of the Cambridge Structural Database (CSD v1.13,
date: 15/12/2011): F. H. Allen, Acta Crystallogr., Sect. B: Struct.
Sci., 2002, 58, 380.
12 Attempts to trap the headspace of the reactions or to analyse the
LiBr byproduct for LiH proved inconclusive.
To summarise, this study establishes that alkali metals can be
employed to modulate the reactivity of a diaminobromoborane. On
one hand regioselective mono- and bis-borylation of naphthalene
can be effected, or alternatively boryl lithium or hydroborane
compounds can be prepared.
13 (a) E. L. Muetterties, J. Am. Chem. Soc., 1960, 82, 4163;
(b) E. L. Muetterties and F. N. Tebbe, Inorg. Chem., 1968,
7, 2663; (c) A. Del Grosso, C. A. Muryn, R. G. Pritchard and
M. J. Ingleson, Organometallics, 2010, 29, 241; (d) V. I. Bregadze,
I. D. Kosenko, I. A. Lobanova, Z. A. Starikova, I. A. Godovikov
and I. B. Sivaev, Organometallics, 2010, 29, 5366.
We thank the Royal Society, EPSRC, ERC, and the University
of Nottingham for generously supporting this work.
14 (a) P. Bissinger, H. Braunschweig, K. Kraft and T. Kupfer, Angew.
Chem., Int. Ed., 2011, 50, 4704; (b) P. Bissinger, H. Braunschweig,
A. Damme, R. D. Dewhurst, T. Kupfer, K. Radacki and K. Wagner,
J. Am. Chem. Soc., 2011, 133, 19044; (c) D. P. Curran, A. Boussonniere,
S. J. Geib and E. Lacote, Angew. Chem., Int. Ed., 2012, 51, 1602.
15 The reactivity of 1 contrasts to less sterically demanding diamino-
haloboranes which react with alkali metals to afford diborane(4)
compounds, see: L. Weber, H. B. Wartig, H.-G. Stammler and
B. Neumann, Z. Anorg. Allg. Chem., 2001, 627, 2663.
16 (a) Y. Segawa, M. Yamashita and K. Nozaki, Science, 2006,
314, 113; (b) Y. Segawa, M. Yamashita and K. Nozaki, Angew.
Chem., Int. Ed., 2007, 46, 6710; (c) M. Yamashita, Y. Suzuki,
Y. Segawa and K. Nozaki, J. Am. Chem. Soc., 2007, 129, 9570;
(d) Y. Segawa, Y. Suzuki, M. Yamashita and K. Nozaki, J. Am.
Chem. Soc., 2008, 130, 16069.
Notes and references
1 Activation and Functionalisation of C–H Bonds, ed. K. L. Goldberg
and A. S. Goldman, ACS Symposium Series, American Chemical
Society, Washington DC, 2004, vol. 885.
2 Selected reviews: (a) J. A. Labinger and J. E. Bercaw, Top. Curr. Chem.,
2011, 35, 29; (b) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010,
110, 1147; (c) M. T. Whited and R. H. Grubbs, Acc. Chem. Res., 2009,
42, 1607; (d) R. E. Mulvey, Acc. Chem. Res., 2009, 42, 743;
(e) J. F. Hartwig, Nature, 2008, 455, 314; (f) R. N. Perutz and
S. Sabo-Etienne, Angew. Chem., Int. Ed., 2007, 46, 2578; (g) K. R.
Campos, Chem. Soc. Rev., 2007, 36, 1069; (h) M. Lersch and M. Tilset,
Chem. Rev., 2005, 105, 2471; (i) R. H. Crabtree, J. Chem. Soc.,
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 5769–5771 5771