M. Andrés et al. / Bioorg. Med. Chem. Lett. 23 (2013) 3349–3353
3353
Invest. Drugs 2010, 19, 947; (d) Burgess, L. Annu. Rep. Med. Chem. 2011, 46,
119.
11. Hirai, H.; Tanaka, K.; Takano, S.; Ichimasa, M.; Nakamura, M.; Nagata, K. J.
Immunol. 2002, 168, 981.
12. Sugimoto, H.; Shichijo, M.; Iino, T.; Manabe, Y.; Watanabe, A.; Shimazaki, M.;
Gantner, F.; Bacon, K. B. J. Pharmacol. Exp. Ther. 2003, 305, 347.
13. Andrés, M.; Bravo, M.; Buil, M. A.; Calbet, M.; Castillo, M.; Castro, M.; Eichhorn,
P.; Ferrer, M.; Lehner, M. D.; Moreno, I.; Roberts, R. S.; Sevilla, S. Eur. J. Med.
Chem. 2013, manuscript in preparation.
We also characterised the dissociation kinetics of some of these
compounds, following some reports of the potential for slow off-
rate compounds from the CRTh2 receptor.26 Briefly, membranes
were incubated for 1 h with the test compound at 10 Â IC50. We
then initiated compound dissociation by adding a huge excess of
PGD2 (100
pound dissociated, re-binding was prevented by mass-action law.
We could then perform the standard GTP S assay at intervals event
l cS) so that once the test com-
M and 0.1 nM 35S-GTP
14. Approximately 100 K compounds were screened by homogeneous cAMP assay
in 384-well format using the cAMP dynamic 2 jumbo kit (Ref. 62AM4PEJ,
c
to follow the loss of binding activity over time. Using this assay,
benzyl-substituted compounds 24 and 25 showed rapid dissocia-
tion half-lives of 2 and 12 min respectively. Benzhydryl analogue
47 was somewhat slower with a half-life of around 30 min.
In conclusion, HTS identified the pyrazole-4-acetic acid sub-
structure as a micromolar hit. The SAR of the scaffold was investi-
gated, showing significant differences in some case to the SAR of
reported indole acetic acid CRTh2 antagonists. SAR was able to
identify 25 as a very potent inhibitor in vitro. The extremely high
PPB of this series was a mitigating factor for the further develop-
ment of these compounds. Pyridyl analogue 39 was seen as an
attractive alternative. The SAR uncovered around the pyrazoles
was of interest for other CRTh2 antagonist series which will be re-
ported in due course.
CisBio) using HTRF energy transfer technology.
observed.
15. 4-8 lg of membranes obtained from CHO.K1 cells stably over-expressing
A hit rate of 0.45% was
CRTh2 were pre-incubated with the compound to be tested for 1 h, followed
by incubation with 50 nM PGD2 and 0.1 nM guanosine [gamma-
thio]triphosphate ([35S]-GTP
c
S) in incubation buffer (20 mM HEPES, 10 mM
MgCl2, 100 mM NaCl, 10
l
M GDP, 10 g/ml saponine and either 0.2% BSA or
l
1% HSA as appropriate) for 2 h at rt. The reaction was terminated by filtration
using GF/C plates pre-treated with 20 mM HEPES, 10 mM MgCl2, 100 mM
NaCl and 0.1% BSA, washing 6 times with buffer (20 mM NaH2PO4, 20 mM
Na2HPO4). The plates were dried and scintillation buffer Optiphase was added.
The radioactivity retained in the filter was counted using a Microbeta liquid
scintillation counter. Compound IC50s were determined using Excel XL-fit for
calculations. Antagonism was observed by the reduction of retained
radioactivity from control. Agonism could be measured using
assay set-up but without the 1 h pre-incubation and without the addition of
PGD2.
a similar
16. Whole blood obtained from consenting donors was mixed with heparin and
kept in rotation until use. For compound treatment, 90
with 10 l of test compound solution and incubated for 10 min at room
temperature followed by addition of 10 l 500 nM PGD2 for exactly 4 min at
ll of blood was mixed
The structures of the set of pyrazoles 12 of Figure 3 are con-
tained in the Supplementary data supplied with this manuscript.
l
l
37 °C. The reaction was stopped by placing the tubes on ice and adding of
0.25 ml of ice cold 1:5 diluted CellFix (BD Biosciences). Red blood cells were
lysed in two steps by adding 2 ml of lysis solution (150 mM ammonium
chloride, 10 mM potassium hydrogencarbonate), incubating for 20 and 10 min
respectively and centrifuging at 300g for 5 min at 6 °C. The pellet was re-
Acknowledgments
The authors thank the following for their valuable assistance in
the experimental procedures: Laura Estrella, Manel de Luca, José
Luís Gómez, Encarna Jiménez, Francisco Jiménez, Juan Navarro, Isa-
bel Pagan and Sílvia Petit.
suspended in 0.2 ml fixative solution and immediately analysed on
a
FACSCalibur (BD Biosciences). Eosinophils were gated on the basis of
autofluorescence in the FL2 channels and shape change of 600 cells was
assayed by forward scatter and side scatter analysis. Compound IC50s were
determined using Excel XL fit for calculations.
17. Elguero, J. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C.
W., Scriven, E. F. V., Eds.; Pergamon Press, Oxford, 1996; Vol. 3, p 1.
18. Compounds of formula 11b were found to be weakly active if at all (data not
shown).
19. Masood, M. A.; Gardner, M.; Dack, K.; Winpenny, D.; Lunn, G. Bioorg. Med.
Chem. Lett. 2012, 22, 3682.
20. (a) Oost, T.; Anderskewitz, R.; Hamprecht, D. W.; Hoenke, C.; Martyres, D.; Rist,
W.; Seither, P. PCT Int. Appl. 2011, WO2011092140.; (b) Anderskewitz, R.;
Martyres, D.; Oost, T.; Rist, W.; Seither, P. PCT Int. Appl. 2012, WO2012101043.;
(c) Martyres, D.; Anderskewitz, R.; Hoenke, C.; Kriegl, J.; Oost, T.; Rist, W.;
Seither, P. PCT Int. Appl. 2012, WO2012130633.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
21. Birkinshaw, T. N.; Teague, S. J.; Beech, C.; Bonnert, R. V.; Hill, S.; Patel, A.;
Reakes, S.; Sanganee, H.; Dougall, I. G.; Phillips, T. T.; Salter, S.; Schmidt, J.;
Arrowsmith, E. C.; Carrillo, J. J.; Bell, F. M.; Paine, S. W.; Weaver, R. Bioorg. Med.
Chem. Lett. 2006, 16, 4287.
22. Brameld, K. A.; Kuhn, B.; Reuter, D. C.; Stahl, M. J. Chem. Inf. Model. 2008, 48, 1.
23. Representative data for 25: 1H NMR (400 MHz, DMSO-d6) d ppm 1.83 (s, 3H),
3.47 (s, 2H), 5.53 (s, 2H), 6.54 (d, J = 7.03 Hz, 1H), 7.29–7.36 (m, 1H), 7.40 (t,
J = 7.42 Hz, 2H), 7.53 (d, J = 7.42 Hz, 2H), 7.60–7.71 (m, 4H), 7.72–7.80 (m, 1H),
8.00 (d, J = 7.42 Hz, 2H), 8.21 (dd, J = 5.47, 3.52 Hz, 1H), 12.36 (s, 1H). HPLC/MS
(15 min) retention time 8.18 min. LRMS: m/z 447 (M+1).
1. Lewis, R. A.; Soter, N. A.; Diamond, K. F.; Oates, J. A.; Roberts II, L. J. J. Immunol.
1982, 129, 1627.
2. (a) Urade, Y.; Ujihara, M.; Horiguchi, Y.; Ikai, K.; Hayaishi, O. J. Immunol. 1989,
143, 2982; (b) Tanaka, K.; Ogawa, K.; Sugamura, K.; Nakamura, M.; Takano, S.;
Nagata, K. J. Immunol. 2000, 164, 2277.
3. (a) Coleman, R. A.; Sheldrick, R. L. G. Br. J. Pharmacol. 1989, 96, 688; (b) Francis,
H. P.; Greenham, S. J.; Patel, U. P.; Thompson, A. M.; Gardiner, P. J. Br. J.
Pharmacol. 1991, 104, 596.
4. Boie, Y.; Saywer, N.; Slipetz, D. M.; Metters, K. M.; Abramovitz, M. J. Biol. Chem.
1995, 270, 18910.
24. (a) Trainor, G. L. Exp. Opin. Drug Disc. 2007, 2, 51; (b) Smith, D. A.; Di, L.; Kerns,
E. H. Nat. Rev. Drug Disc. 2010, 9, 919; (c) Liu, X.; Chen, C.; Hop, C. E. C. A. Curr.
Top. Med. Chem. 2011, 11, 450.
5. (a) Nagata, K.; Tanaka, K.; Ogawa, K.; Kemmotsu, K.; Imai, T.; Yoshie, O.; Abe,
H.; Tada, K.; Nakamura, M.; Sugamura, K.; Takano, S. J. Immunol. 1999, 162,
1278; (b) Powell, W. S. Prostaglandins Leukot. Essent. Fatty Acids 2003, 69, 179.
6. (a) Hirai, H.; Tanaka, K.; Yoshie, O.; Ogawa, K.; Kenmotsu, K.; Takamori, Y.;
Ichimasa, M.; Sugamura, K.; Nakamura, M.; Takano, S.; Nagata, K. J. Exp. Med.
2001, 193, 255; (b) Shichijo, M.; Sugimoto, H.; Nagao, K.; Inbe, H.; Encinas, J. A.;
Takeshita, K.; Bacon, K. B.; Gantner, F. J. Pharmacol. Exp. Ther. 2003, 307, 518.
7. Xue, L.; Barrow, A.; Pettipher, R. J. Immunol. 2009, 182, 7580.
8. Xue, L.; Gyles, S. L.; Wettey, F. R.; Gazi, L.; Townsend, E.; Hunter, M. G.;
Pettipher, R. J. Immunol. 2005, 175, 6531.
25. Grimstrup, M.; Rist, Ø.; Receveur, J.-M.; Frimurer, T. M.; Ulven, T.; Mathiesen, J.
M.; Kostenis, E.; Högberg, T. Bioog. Med. Chem. Lett. 2009, 20, 1181.
26. (a) Mathiesen, J. M.; Christpoulos, A.; Ulven, T.; Royer, J. F.; Campillo, M.;
Heinemann, A.; Pardo, L.; Kostenis, E. Mol. Pharmacol. 2006, 69, 1441; (b)
Gervais, F. G.; Sawyerm, N.; Stocco, R.; Hamel, M.; Krawczyk, C.; Sillaots, S.;
Denis, D.; Wong, E.; Wang, Z.; Gallant, M.; Abraham, W. M.; Slipetz, D.;
Crackower, M. A.; O’Neill, G. P. Mol. Pharmacol. 2011, 79, 69; (c) Stock, N.;
Volkots, D.; Stebbins, K.; Broadhead, A.; Stearns, B.; Roppe, J.; Parr, T.; Baccei,
C.; Bain, G.; Chapman, C.; Correa, L.; Darlington, J.; King, C.; Lee, C.; Lorrain, D.
S.; Prodanovich, P.; Santini, A.; Evans, J. F.; Hutchinson, J. H.; Prasit, P. Bioorg.
Med. Chem. Lett. 2011, 21, 1036.
9. (a) Chen, J. J.; Budelsky, A. L. Prog. Med. Chem. 2011, 50, 49; (b) Pettipher, R.;
Whittaker, M. J. Med. Chem. 2012, 55, 2915.
10. (a) Medina, J. C.; Liu, J. Annu. Rep. Med. Chem. 2006, 41, 221; (b) Ulven, T.;
Kostenis, E. Exp. Opin. Ther. Patents 2010, 20, 1505; (c) Norman, P. Exp. Opin.