Communication
ChemComm
DPV analysis (Fig. S9.1, ESI†). Compared with macrocycles 3
This work was supported by IISER Thiruvananthapuram and
(Eox1 = 1.32 V) and 4 (Eox1 = 1.04 V), the first oxidation of 5 SERB Core Research Grant No. CRG/2019/006303. A. K. thanks
(Ered1 = 1.51 V) occurs at a significantly more positive potential. CSIR and A. S. thanks IISER TVM for their fellowships. We
Such an effect is inherent due to the meso-pentafluoro sub- thank Alex P. Andrews for solving the X-ray structures of 3, 4,
stituents of 5 being harder to oxidize and easier to reduce and 5.
(Ered1 = À0.28 V) than those of the meso-unsubstituted homo-
logue 4. No significant change in the reduction potential was
Conflicts of interest
observed between 3 (Ered1 = À0.50 V) and 4 (Ered1 = À0.49 V),
signifying a minimal redox change by the introduction of
pyrrole at one of the meso-position of 4.
There are no conflicts to declare.
The analysis of frontier molecular orbitals (FMOs) reveals
that the highest occupied molecular orbitals (HOMOs) and
lowest unoccupied molecular orbitals (LUMOs) of macrocycles
4 and 5 are identical in shape with a similar energy gap
(Fig. S8.6, ESI†). For all the compounds, the LUMOs are readily
isolated from other unoccupied orbitals. The HOMO–LUMO
gap for tautomer 3T1 is B2.34 eV and decreases to B2.01 eV for
the tautomer 3T2 (Fig. S8.5, ESI†). The HOMO and LUMO of 5
are relatively stabilized as compared with those of 3 and 4 due
to the electron withdrawing meso-C6F5 substituents. The broad
absorbances in 3–5 are both composed of transitions that are a
mixture of HOMO - LUMO and HOMOÀ1 - LUMO transi-
tions. To further evaluate the aromatic character, we calculated
NICS values at the global centre of macrocycles 3, 4 and 5,
estimated to be À2.84, À3.29 and À3.58 ppm, respectively,
thereby suggesting the weak aromatic nature of these macro-
cycles (Fig. S8.1–3, ESI†). Further, to evaluate the aromaticity,
we conducted an anisotropy of the induced current density
(ACID) plot visualizing their distinct clockwise ring current and
corroborating its aromatic character (Fig. S10.2, ESI†). DIHT
Notes and references
1 T. Kumagai, F. Hanke, S. Gawinkowski, J. Sharp, K. Kotsis, J. Waluk,
M. Persson and L. Grill, Nat. Chem., 2014, 6, 41–46.
2 J. N. Ladenthin, T. Frederiksen, M. Persson, J. C. Sharp,
S. Gawinkowski, J. Waluk and T. Kumagai, Nat. Chem., 2016, 8,
935–940.
3 M. Drobizhev, N. S. Makarov, A. Rebane, G. de la Torre and
T. Torres, J. Phys. Chem. C, 2008, 112, 848–859.
4 M. J. Crossley, L. D. Field, M. M. Harding and S. J. Sternhell,
J. Am. Chem. Soc., 1987, 109, 2335–2341.
5 J. Braun, M. Schlabach, B. Wehrle, M. Kçcher, E. Vogel and
H. H. Limbach, J. Am. Chem. Soc., 1994, 116, 6593–6604.
6 J. Braun, H. H. Limbach, P. G. Williams, H. Morimoto and
D. E. Wemmer, J. Am. Chem. Soc., 1996, 118, 7231–7232.
7 R. Gui, H. Jin, X. Bu, Y. Fu, Z. Wang and Q. Liu, Coord. Chem. Rev.,
2019, 383, 82–103.
8 Z. Wang, C.-Y. Zhu, J.-T. Mo, X.-Y. Xu, J. Ruan, M. Pan and C.-Y. Su,
Angew. Chem., Int. Ed., 2021, 133, 2556–2563.
9 H. L. Lee, H. J. Jang and J. Y. Lee, J. Mater. Chem. C, 2020, 8,
10302–10308.
10 X. Ji, R.-T. Wu, L. Long, X.-S. Ke, C. Guo, Y.-J. Ghang, V. M. Lynch,
F. Huang and J. L. Sessler, Adv. Mater., 2018, 30, 1705480.
11 M. Luo, X. Li, L. Ding, G. Baryshnikov, S. Shen, M. Zhu, L. Zhou,
M. Zhang, J. Lu, H. Ågren, X.-D. Wang and L. Zhu, Angew. Chem., Int.
Ed., 2020, 59, 17018–17025.
calculations employing density functional theory (DFT)23 pro- 12 S. M. A. Fateminia, Z. Mao, S. Xu, Z. Yang, Z. Chi and B. Liu,
Angew. Chem., Int. Ed., 2017, 56, 12160–12164.
13 A. Vdovin, J. Sepiol, N. Urbanska, M. Pietraszkiewicz, A. Mordzinski
vide the relative energy difference between the 3T1 and 3T2
tautomers to be 2.22 kcal molÀ1 (Fig. 1 and Table S7.4, ESI†).
and J. Waluk, J. Am. Chem. Soc., 2006, 128, 2577–2586.
Notably, DIHT can be achieved via thermal activation or by a 14 M. Gil and J. Waluk, J. Am. Chem. Soc., 2007, 129, 1335–1341.
15 M. Kruk, T. H. Ngo, P. Verstappen, A. Starukhin, J. Hofkens,
photo-induced process, which are extensively studied in
W. Dehaen and W. Maes, J. Phys. Chem. A, 2012, 116, 10695–10703.
porphycenes.24 We observed the meta-stable cis intermediates
´
16 M. Beenken, W. Maes, M. Kruk, T. Martınez and M. Presselt, J. Phys.
which facilitates the DIHT as reported previously.25,26 Other
possible tautomeric species involving single or double proton
transfer were identified, but were found to be energetically
high, making the tautomerism unfavourable, as calculated by
DFT (Table S7.4, and Fig. S7.3, ESI†).
In conclusion, we synthesized three carbazole embedded
porphyrin-like macrocycles 3–5 bearing different meso-subs-
tituents. Single-crystal X-ray diffraction analyses reveal the
planar conformations of macrocycles 4 and 5, but slight dis-
tortion of the macrocyclic plane in 3 with two strong inter-
molecular N–HÁ Á ÁN hydrogen bonding interactions was
observed. The combined photophysical and theoretical studies
confirm dual emission originating from two tautomers 3T1 and
3T2 having lower symmetry. Further work is ongoing to estab-
lish the underlying mechanisms associated with NH tauto-
merism and the structure of the molecule in the excited state.
Chem. A, 2015, 119, 6875–6883.
17 A. Takiguchi, S. Kang, N. Fukui, D. Kim and H. Shinokubo, Angew.
Chem., Int. Ed., 2021, 60, 2915–2919, DOI: 10.1002/anie.202013542.
18 A. Kalaiselvan, I. S. V. Krishna, A. P. Nambiar, A. Edwin, V. S. Reddy
and S. Gokulnath, Org. Lett., 2020, 22, 4494–4499.
19 K. Yamasumi, Y. Notsuka, Y. Yamaoka, S. Mori, M. Ishida and
H. Furuta, Chem. – Eur. J., 2020, 26, 13590–13594.
20 P. D. Rao, B. J. Littler, G. R. Geier and J. S. Lindsey, J. Org. Chem.,
2000, 65, 1084–1092.
21 C. Maeda, M. Masuda and N. Yoshioka, Org. Biomol. Chem., 2014,
12, 2656–2662.
22 J. Herbich, M. Kijak, A. Zielinska, R. P. Thummel and J. Waluk,
J. Phys. Chem. A, 2002, 106, 2158–2163.
23 M. J. Frisch et al., GAUSSIAN 16 (Revision A.03), Gaussian, Inc.,
Wallingford CT, 2016. For the full citations, see ESI†.
24 T. Kumagai, F. Hanke, S. Gawinkowski, J. Sharp, K. Kotsis, J. Waluk,
M. Persson and L. Grill, Phys. Rev. Lett., 2013, 111, 246101.
25 D. K. Maity, R. L. Bell and T. N. Truong, J. Am. Chem. Soc., 2000, 122,
897–906.
26 M. J. Crossley, M. M. Harding and S. Sternhell, J. Am. Chem. Soc.,
1986, 108, 3608–3613.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 4420–4423 | 4423