Communication
Green Chemistry
and C.-J. Li, J. Am. Chem. Soc., 2005, 127, 3672; (m) O. Baslé
and C.-J. Li, Green Chem., 2007, 9, 1047; (n) Z. Li and
C.-J. Li, J. Am. Chem. Soc., 2005, 127, 6968 For representa-
tive examples of transition-metal free conditions, see:
(o) J. DineshKumar, M. Lamani, K. Alagiri and
K. R. Prabhu, Org. Lett., 2013, 15, 1092; (p) D. P. Hari and
B. Konig, Org. Lett., 2011, 13, 3852; (q) H. Yu, H. Kim,
S.-H. Baek and D. Lee, Front. Chem., 2020, 8, 629; (r) A.
S.-K. Tsang, K. Ingram, J. Keiser, D. B. Hibbertc and
M. H. Todd, Org. Biomol. Chem., 2013, 11, 4921;
(s) V. V. Kouznetsov, M. C. Ortiz-Villamizar, L. Y. Méndez-
Vargas and G. C. E. Puerto, Curr. Org. Chem., 2020, 24, 809
and references therein; (t) J. Dhineshkumar, P. Samaddar
and K. R. Prabhu, ACS Omega, 2017, 2, 4885 See also for
radical intermediate. (u) P. Kohls, D. Jadhav, G. Pandey and
O. Reiser, Org. Lett., 2012, 14, 672.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
Financial support from SERB, New Delhi, grant no-CRG/2018/
002147 (GAP321) is highly acknowledged. PJ and SH thank UGC
and CSIR, respectively, for providing fellowship. The authors
acknowledge SAIF, CSIR-CDRI, for providing analytical support.
This manuscript bears CDRI communication number 10219.
Notes and references
1 E. Vitaku, D. T. Smith and J. T. Njardarson, J. Med. Chem.,
2014, 57, 10257.
7 (a) A. Paul, A. Adili and D. Seidel, Org. Lett., 2019, 21, 1845;
(b) Z. Zhu, H. S. Chandak and D. Seidel, Org. Lett., 2018,
20, 4090; (c) D. Seidel, Acc. Chem. Res., 2015, 48, 317;
(d) W. Chen, R. G. Wilde and D. Seidel, Org. Lett., 2014, 16,
730; (e) W. Chen, R. G. Wilde and D. Seidel, Org. Lett.,
2014, 16, 3158; (f) C. Zhang, D. Dasa and D. Seidel, Chem.
Sci., 2011, 2, 233.
2 For review, see: (a) E. A. Mitchell, A. Peschiulli, N. Lefevre,
L. Meerpoel and B. U. W. Maes, Chem. – Eur. J., 2012, 18,
10092; (b) K. R. Campos, Chem. Soc. Rev., 2007, 36, 1069.
3 For some recent examples, see: (a) W. Chen, L. Ma, A. Paul
and D. Seidel, Nat. Chem., 2018, 10, 165; (b) Y. Liu and
H. Ge, Nat. Chem., 2017, 9, 26; (c) G. He, B. Wang,
W. A. Nack and G. Chen, Acc. Chem. Res., 2016, 49, 635 and
references therein; (d) J. E. Spangler, Y. Kobayashi,
P. Verma, D.-H. Wang and J.-Q. Yu, J. Am. Chem. Soc., 2015,
137, 11876; (e) S. A. Girard, T. Knauber and C.-J. Li, Angew.
Chem., Int. Ed., 2014, 53, 74; (f) A. McNally, B. Haffemayer,
B. S. L. Collins and M. J. Gaunt, Nature, 2014, 510, 129;
(g) L. Shi and W. Xia, Chem. Soc. Rev., 2012, 41, 7687.
4 For representative reviews, see: (a) M. Iranshahy, R. Quinn
and M. Iranshahi, RSC Adv., 2014, 4, 15900;
(b) K. W. Bentley, Nat. Prod. Rep., 2005, 22, 249;
(c) K. W. Bentley, Nat. Prod. Rep., 2004, 21, 395.
8 (a) I. Rahman, B. Deka, R. Thakuria, M. L. Deb and
P. K. Baruah, Org. Biomol. Chem., 2020, 18, 6514;
(b) M. L. Deb, P. J. Borpatra and P. K. Baruah, Green Chem.,
2019, 21, 69; (c) S. Haldar and C. K. Jana, Org. Biomol.
Chem., 2019, 17, 1800; (d) J. Huang, L. Li, T. Xiao,
Z.-W. Mao and L. Zhou, Asian J. Org. Chem., 2016, 5, 1204;
(e) G. Shao, Y. He, Y. Xu, J. Chen, H. Yu and R. Cao,
Eur. J. Org. Chem., 2015, 4615; (f) F. Yi, J. Su, S. Zhang,
W. Yi and L. Zhang, Eur. J. Org. Chem., 2015, 7360;
(g) Y. Chen and G. Feng, Org. Biomol. Chem., 2015, 13,
4260; (h) S. Haldar, S. K. Roy, B. Maity, D. Koley and
C. K. Jana, Chem. – Eur. J., 2015, 21, 15290; (i) W. Lin,
T. Cao, W. Fan, Y. Han, J. Kuang, H. Luo, B. Miao, X. Tang,
Q. Yu, W. Yuan, J. Zhang, C. Zhu and S. Ma, Angew. Chem.,
Int. Ed., 2014, 53, 277; ( j) S. Haldar, S. Mahato and
C. K. Jana, Asian J. Org. Chem., 2014, 3, 44; (k) Q.-H. Zheng,
W. Meng, G.-J. Jiang and Z.-X. Yu, Org. Lett., 2013, 15, 5928.
9 (a) L. Shi, M. Wang, L. Pan, Y. Li and Q. Liu, Chem.
Commun., 2018, 54, 8721; (b) C.-B. Yi, Z.-Y. She, Y.-F. Cheng
and J. Qu, Org. Lett., 2018, 20, 668; (c) X. Wang, G. Li, X. Li,
D. Zhu and R. Shen, Org. Chem. Front., 2021, 8, 297.
5 For book chapter, see: M. C. Ortiz Villamizar,
C. E. P. Galvis and V. V. Kouz-netsov, Heterocycles via Cross
Dehydrogenative Coupling, 2019, pp. 77–105.
6 For representative examples of transition-metal catalysed
reactions, see: (a) W.-J. Yoo and S. Kobayashi, Green Chem.,
2014, 16, 2438; (b) J.-J. Zhong, Q.-Y. Meng, G.-X. Wang,
Q. Liu, B. Chen, K. Feng, C.-H. Tung and L.-Z. Wu, Chem. –
Eur. J., 2013, 19, 6443; (c) A. G. Condie, J. C. Gonzalez-
Gomez and C. R. J. Stephenson, J. Am. Chem. Soc., 2010,
132, 1464; (d) J. Xie, H. Li, J. Zhou, Y. Cheng and C. Zhu, 10 For addition of arenes on sp2–C of quinone, see;
Angew. Chem., Int. Ed., 2012, 51, 1252; (e) K. Alagiri and
K. R. Prabhu, Org. Biomol. Chem., 2012, 10, 835;
(f) K. Alagiri, G. S. R. Kumara and K. R. Prabhu, Chem.
Commun., 2011, 47, 11787; (g) X.-Z. Shu, Y.-F. Yang,
X.-F. Xia, K.-G. Ji, X.-Y. Liu and Y. M. Liang, Org. Biomol.
Chem., 2010, 8, 4077; (h) P. Liu, C.-Y. Zhou, S. Xiang and
C.-M. Che, Chem. Commun., 2010, 46, 2739; (i) M. R. Patil,
N. P. Dedhia, A. R. Kapdi and A. V. Kumar, J. Org. Chem.,
(a) J. Z. Wang, J. Zhou, C. Xu, H. B. Sun, L. Kürti and
Q. L. Xu, J. Am. Chem. Soc., 2016, 138, 5202; (b) H. Gao,
Q. L. Xu, C. Keene, M. Yousufuddin, D. H. Ess and L. Kürti,
Angew. Chem., Int. Ed., 2016, 55, 566; (c) T. Kamitanaka,
K. Morimoto, K. Tsuboshima, D. Koseki, H. Takamuro,
T. Dohi and Y. Kita, Angew. Chem., Int. Ed., 2016, 55, 15535;
(d) T. Dohi, N. Washimi, T. Kamitanaka, K. I. Fukushima
and Y. Kita, Angew. Chem., Int. Ed., 2011, 50, 6142.
2018, 83, 4477; ( j) E. Boess, C. Schmitz and M. Klussmann, 11 S. Husen, A. Chauhan and R. Kumar, Green Chem., 2020,
J. Am. Chem. Soc., 2012, 134, 5317; (k) Z. Li, D. S. Bohle and 22, 1119.
C.-J. Li, Proc. Natl. Acad. Sci. U. S. A., 2006, 8928; (l) Z. Li 12 See the ESI† for details.
2954 | Green Chem., 2021, 23, 2950–2955
This journal is © The Royal Society of Chemistry 2021