ORGANIC
LETTERS
2012
Vol. 14, No. 13
3348–3351
Rapid Continuous Synthesis of
50-Deoxyribonucleosides in Flow via
Brønsted Acid Catalyzed Glycosylation
Bo Shen and Timothy F. Jamison*
Department of Chemistry, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, United States
Received May 12, 2012
ABSTRACT
A general, green, and efficient Brønsted acid-catalyzed glycosylation serves as a key step in the one-flow, multistep syntheses of several
important 50-deoxyribonucleoside pharmaceuticals.
Compelling biological activities are associated with
many deoxynucleosides.1 Among them, 50-deoxyribonu-
cleosides, including doxifluridine (1), galocitabine (2), and
capecitabine (3) (Figure 1), demonstrate potent antiviral
and antitumor effects. In particular, capecitabine is an
important drug used for the treatment of breast and
colorectal cancers.2 Syntheses of some specific 50-deoxy-
ribonucleoside targets have been reported,3,4 and in all cases
This method joins a protected sugar (e.g., 4) with silylated
nitrogenous bases in the presence of a Lewis acid. How-
ever, the reaction generally requires several hours and a
stoichiometric amount or excess of a Lewis acid, with
SnCl4 being the most commonly used. Aqueous workup
followed by extraction and separation is required, gener-
ating copious amounts of waste. A greener and more
€
the key glycosylation step is effected using the Vorbruggen
(3) Syntheses via glycosylation: (a) Moon, B. S.; Shim, A. Y.; Lee,
K. C.; Lee, H. J.; Lee, B. S.; An, G. I.; Yang, S. D.; Chi, D. Y.; Choi,
C. W.; Lim, S. M.; Chun, K. S. Bull. Korean Chem. Soc. 2005, 26, 1865.
(b) Moon, B. S.; Lee, K. C.; Lee, H. J.; An, G. I.; Yang, S. D.; Chi, D. Y.;
Chun, K. S. J. Labelled Compd. Radiopharm. 2005, 48, S201. (c) Fei,
X. S.; Wang, J. Q.; Miller, K. D.; Sledge, G. W.; Hutchins, G. D.; Zheng,
Q. H. Nucl. Med. Biol. 2004, 31, 1033. (d) Shimma, N.; Umeda, I.;
Arasaki, M.; Murasaki, C.; Masubuchi, K.; Kohchi, Y.; Miwa, M.; Ura,
M.; Sawada, N.; Tahara, H.; Kuruma, I.; Horii, I.; Ishitsuka, H. Bioorg.
Med. Chem. 2000, 8, 1697. (e) Li, J. J., Johnson, D. S., Eds. Modern Drug
Synthesis; John Wiley & Sons: Hoboken, 2010; pp 57ꢀ71 and references
cited therein. Selected patents:(f)Brinkman, H. R.;Kalaritis, P.; Morrissey,
J. F. US Pat. 5476932, Dec 19, 1995. (g) Hu, T.-C.; Huang, H.-T. PCT Int.
Appl. 2011010967, Jan 27, 2011. (h) Kamiya, T.; Ishiduka, M.; Nakajima, H.
Eur. Pat. Appl. 602478, Jun 22, 1994. (i) Fujiu, M.; Ishitsuka, H.; Miwa, M.;
Umeda, I.; Yokose, K. Eur. Pat. Appl. 316704, May 24, 1989. (j) Li, J.; He, B.;
Shao, L.; Wang, L. PCT Int. Appl. 2005080351, Sep 1, 2005. (k) Bertolini,
G.; Frigerio, M. PCT Int. Appl. 2005040184, May 6, 2005.
modification of the silylꢀHilbertꢀJohnson reaction.5,6
(1) (a) Ichikawa, E.; Kato, K. Curr. Med. Chem. 2001, 8, 385. (b) Chu,
C. K., Baker, D. C., Eds. Nucleosides and Nucleotides as Antitumor and
Antiviral Agents; Plenum Press: New York, 1993. (c) Peters, G. J. Deox-
ynucleoside Analogs in Cancer Therapy; Humana Press: Totowa, NJ, 2006.
(d) Herdwijn, P., Modified Nucleosides: in Biochemistry, Biotechnology
and Medicine; Wiley-VCH: Weinheim, 2008. (e) Perigaud, C.; Gosselin, G.;
Imbach, J. L. Nucleosides Nucleotides 1992, 11, 903.
(2) For reviews on capecitabine, see: (a) Walko, C. M.; Lindley, C.
Clin. Ther. 2005, 27, 23. (b) Wagstaff, A. J.; Ibbotson, T.; Goa, K. L.
Drugs 2003, 63, 217. (c) McGavin, J. K.; Goa, K. L. Drugs 2001, 61,
2309. (d) Koukourakis, G. V.; Kouloulias, V.; Koukourakis, M. J.;
Zacharias, G. A.; Zabatis, H.; Kouvaris, J. Molecules 2008, 13, 1897.
(e) Malet-Martino, M.; Martino, R. Oncologist 2002, 7, 288. (f) Ishitsuka,
H.; Shimma, N.; Horii, I. J. Pharmaceut. Soc. Jap. 1999, 119, 881.
r
10.1021/ol301324g
Published on Web 06/13/2012
2012 American Chemical Society