10.1002/chem.202000253
Chemistry - A European Journal
COMMUNICATION
[10] a) J. M. Murphy, X. Liao, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129,
15434; b) S. Kathiravan, lan. A. Nicholls, Chem. Eur. J. 2017, 23, 7031;
c) E. Erbing, A. S.-Marco, A. V.-Romero, J. Malmberg, M. J. Johansson,
E. G.-Bengoa, B. Martín-Matute, ACS Catal. 2018, 8, 920.
Keywords: cyclopentadienyl ligand • hydrogen bond • ortho-
bromination • phenyl carbamates • rhodium
[1]
[2]
For reviews, see: a) G. W. Gribble, Acc. Chem. Res. 1998, 31, 141; b)
N. Winterton, Green Chem. 2000, 2, 173; c) G. W. Gribble, J. Chem.
Educ. 2004, 81, 1441.
[11] a) D.-G. Yu, T. Gensch, F. de Azambuja, S. V.-Céspedes, F. Glorius, J.
Am. Chem. Soc. 2014, 136, 17722; b) A. B. Pawar, D. M. Lade, Org.
Biomol. Chem. 2016, 14, 3275; c) Z.-lin Li, K.-kang Sun, C. Cai, Org.
Biomol. Chem. 2018, 16, 5433.
For a review, see: Metal-Catalyzed Cross-Coupling Reactions and
More, 1, 2 and 3 (Eds.: A. de Meijere, S. Bräse, M. Oestreich), Wiley-
VCH, New York, 2014.
[12] a) R. K. Chinnagolla, S. Pimparkar, M. Jeganmohan, Chem. Commun.
2013, 49, 3146; b) L. Wang, L. Ackermann, Chem. Commun. 2014, 50,
1083; c) C. J. Teskey, A. Y. W. Lui, M. F. Greaney, Angew. Chem. Int.
Ed. 2015, 54, 11677; Angew. Chem. 2015, 127, 11843; d) Q. Yu, L. Hu,
Y. Wang, S. Zheng, J. Huang, Angew. Chem. Int. Ed. 2015, 54, 15284;
Angew. Chem. 2015, 127, 15499; e) X. Hong, Q. Zhou, S. Huang, H.-Z.
Cui, Z.-M. Li, X.-F. Hou, Org. Chem. Front. 2019, 6, 2226.
[3]
[4]
For reviews, see: b) Y. L. Janin, Chem. Rev. 2012, 112, 3924; b) I.
Saikia, A. J. Borah, P. Phukan, Chem. Rev. 2016, 116, 6837.
For a review, see: Y. Xiang, P.-Y. Caron, B. M. Lillie, R. Vaidyanathan,
Org. Process Res. Dev. 2008, 12, 116.
[5]
[6]
For a review, see: V. Snieckus, Chem. Rev. 1990, 90, 879.
For selected recent reviews, see: a) P. Gandeepan, T. Muller, D. Zell,
G. Cera, S. Warratz, L. Ackermann, Chem. Rev. 2019, 119, 2192; b) S.
Agasti, A. Dey, D. Maiti, Chem. Commun. 2017, 53, 6544; c) R.-Y. Zhu,
M. E. Farmer, Y.-Q. Chen, J.-Q. Yu, Angew. Chem. Int. Ed. 2016, 55,
10578; Angew. Chem. 2016, 128, 10734; d) C. Liu, J. Yuan, M. Gao, S.
Tang, W. Li, R. Shi, A. Lei, Chem. Rev. 2015, 115, 12138; e) P.
Gandeepan, C.-H. Cheng, Chem. Asian J. 2015, 10, 824; f) J. J.
Topczewski, M. S. Sanford, Chem. Sci. 2015, 6, 70; g) G. Yan, A. J.
Borah, M. Yang, Adv. Synth. Catal. 2014, 356, 2375; h) G. Rouquet, N.
Chatani, Angew. Chem. Int. Ed. 2013, 52, 11726; Angew. Chem. 2013,
125, 11942; i) J. Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369; j)
P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112,
5879; k) B.-J. Li, Z.- J. Shi, Chem. Soc. Rev. 2012, 41, 5588.
[13] a) X. Chen, X.-S. Hao, C. E. Goodhue, J.-Q. Yu, J. Am. Chem. Soc.
2006, 128, 6790; b) S. Mo, Y. Zhu, Z. Shen, Org. Biomol. Chem. 2013,
11, 2756; c) B. Urones, Á. M. Martínez, N. Rodríguez, R. G. Arrayás, J.
C. Carretero, Chem. Commun. 2013, 49, 11044; d) Z.-J. Du, L.-X. Gao,
Y.-J. Lin, F.-S. Han, ChemCatChem 2014, 6, 123; e) B. Li, B. Liu, B.-F.
Shi, Chem. Commun. 2015, 51, 5093; f) J. Xu, X. Zhu, G. Zhou, B. Ying,
P. Ye, L. Su, C. Shen, P. Zhang, Org. Biomol. Chem. 2016, 14, 3016;
g) U. Mandapati, S. Pinapati, R. Tamminana, R. Rameshraju, Catal.
Lett. 2018, 148, 418; h) P. C. Perumgani, S. P. Parvathaneni, G. V. S.
Babu, K. Srinivas, M. R. Mandapati, Catal. Lett. 2018, 148, 1067.
[14] a) A. John, K. M. Nicholas, J. Org. Chem. 2012, 77, 5600; b) X. Sun, Y.
Sun, C. Zhang, Y. Rao, Chem. Commun. 2014, 50, 1262; c) N.
Schrö der, J. Wencel-Delord, F. Glorius, J. Am. Chem. Soc. 2012, 134,
8298.
[7]
[8]
For selected recent reviews, see: a) R. Das, M. Kapur, Asian J. Org.
Chem. 2018, 7, 1524; b) F. Lied, T. Patra, F. Glorius, Isr. J. Chem.
2017, 57, 945; c) D. A. Petrone, J. Ye, M. Lautens, Chem. Rev. 2016,
116, 8003; d) D. Sarkar, A. V. Gulevich, F. S. Melkonyan, V. Gevorgyan,
ACS Catal. 2015, 5, 6792.
[15] a) Y. Shibata, K. Tanaka, Angew. Chem. Int. Ed. 2011, 50, 10917;
Angew. Chem. 2011, 123, 11109; b) S. Yoshizaki, Y. Shibata, K.
Tanaka, Angew. Chem. Int. Ed. 2017, 56, 3590; Angew. Chem. 2017,
129, 3644.
a) D. Kalyani, A. R. Dick, W. Q. Anani, M. S. Sanford, Org. Lett. 2006, 8,
2523; b) D. Kalyani, A. R. Dick, W. Q. Anani, M. S. Sanford,
Tetrahedron 2006, 62, 11483; c) X. Wan, Z. Ma, B. Bijie, K. Zhang, S.
Cao, S. Zhang, Z. Shi, J. Am. Chem. Soc. 2006, 128, 7416; d) T.-S.
Mei, R. Giri, N. Maugel, J.-Q. Yu, Angew. Chem. Int. Ed. 2008, 47,
5215; Angew. Chem. 2008, 120, 5293; e) F. Kakiuchi, T. Kochi, H.
Mutsutani, N. Kobayashi, S. Urano, M. Sato, S. Nishiyama, T. Tanabe,
J. Am. Chem. Soc. 2009, 131, 11310; f) B. Song, X. Zheng, J. Mo, B.
Xu, Adv. Synth. Catal. 2010, 352, 329; g) R. B. Bedford, M. F. Haddow,
C. J. Mitchell, R. L. Webster, Angew. Chem. Int. Ed. 2011, 50, 5524;
Angew. Chem. 2011, 123, 5638; h) Q. Tian, X. Chen, W. Liu, Z. Wang,
S. Shia, C. Kuang, Org. Biomol. Chem. 2013, 11, 7830; i) X. Sun, G.
Shan, Y. Sun, Y. Rao, Angew. Chem. Int. Ed. 2013, 52, 4440; Angew.
Chem. 2013, 125, 4536; j) P. Sadhu, S. K. Alla, T. Punniyamurthy, J.
Org. Chem. 2013, 78, 6104; k) X.-T. Ma, S.-K. Tian, Adv. Synth. Catal.
2013, 355, 337; l) F. Péron, C. Fossey, J. S. O. Santos, T. Cailly, F.
Fabis, Chem. Eur. J. 2014, 20, 7507; m) M. Sun, X. Chen, L. Zhang, W.
Sun, Z. Wang, P. Guo, Y.-M. Li, X.-J. Yang, Org. Biomol. Chem. 2016,
14, 323; n) V. Pascanu, F. Carson, M. V. Solano, J. Su, X. Zou, M. J.
Johansson, B. Martín-Matute, Chem. Eur. J. 2016, 22, 3729; o) F. M.
Moghaddam, G. Tavakoli, B. Saeednia, P. Langer, B. Jafari, J. Org.
Chem. 2016, 81, 3868; p) F.-C. Qiu, W.-C. Yang, Y.-Z. Chang, B.-T.
Guan Asian J. Org. Chem. 2017, 6, 1361; q) R. Das, M. Kapur, J. Org.
Chem. 2017, 82, 1114; r) S. P. Zucker, F. Wossidlo, M. Weber, D.
Lentz, C. C. Tzschucke, J. Org. Chem. 2017, 82, 5616; s) Q.-L. Yang,
X.-Y. Wang, T.-L. Wang, X. Yang, D. Liu, X. Tong, X.-Y. Wu, T.-S. Mei,
Org. Lett. 2019, 21, 2645.
[16] a) Y. Hoshino, Y. Shibata, K. Tanaka, Adv. Synth. Catal. 2014, 356,
1577; b) M. Fukui, Y. Hoshino, T. Satoh, M. Miura, K. Tanaka, Adv.
Synth. Catal. 2014, 356, 1638; c) Y. Takahama, Y. Shibata, K. Tanaka,
Chem. Eur. J. 2015, 21, 9053; d) Y. Shibata, E. Kudo, H. Sugiyama, H.
Uekusa, K. Tanaka, Organometallics 2016, 35, 1547; e) Y. Takahama,
Y. Shibata, K. Tanaka, Org. Lett. 2016, 18, 2934; f) Y. Takahama, Y.
Shibata, K. Tanaka, Chem. Lett. 2016, 45, 1177; g) M. Fukui, Y.
Shibata, Y. Hoshino, H. Sugiyama, H. Uekusa, K. Noguchi, K. Tanaka,
Chem. Asian J. 2016, 11, 2260; h) E. Kudo, Y. Shibata, M. Yamazaki, K.
Masutomi, Y. Miyauchi, M. Fukui, H. Sugiyama, H. Uekusa, T. Satoh, M.
Miura, K. Tanaka, Chem. Eur. J. 2016, 22, 14190; i) Y. Honjo, Y.
Shibata, E. Kudo, T. Namba, K. Tanaka, Chem. Eur. J. 2018, 24, 317; j)
J. Terasawa, Y. Shibata, Y. Kimura, K. Tanaka, Chem. Asian J. 2018,
13, 505; k) T, Yamada, Y. Shibata, S. Kawauchi, S. Yoshizaki, K.
Tanaka, Chem. Eur. J. 2018, 24, 5723; l) T. Yamada, Y. Shibata, K.
Tanaka, Asian J. Org. Chem. 2018, 7, 1396; m) J. Terasawa, Y.
Shibata, M. Fukui, K. Tanaka, Molecules 2019, 23, 3325; n) R.
Yoshimura, Y. Shibata, T. Yamada, K. Tanaka, J. Org. Chem. 2019, 84,
2501; o) R. Yoshimura, Y. Shibata, S. Yoshizaki, J. Terasawa, T.
Yamada, K. Tanaka, Asian J. Org. Chem. 2019, 4, 986; p) Y. Honjo, Y.
Shibata, K. Tanaka, Chem. Eur. J. 2019, 25, 9427; q) R. Yoshimura, Y.
Shibata, K. Tanaka, J. Org. Chem. 2019, 84, 13164; r) T. Yamada, Y.
Shibata, K. Tanaka, Chem. Eur. J. 2019, 25, 16022.
[17] For a review concerning the control of selectivities by harnessing non-
covalent interactions, see: H. J. Davis, R. J. Phipps, Chem. Sci. 2017, 8,
864.
[18] Importantly, the bromination reaction of 8 in the absence of Rh, Ag, and
Cu complexes at 80 °C for 18 h was messy, and thus bromoarene 9,
generated in ca. 50% yield, could not be isolated in pure form.
[9]
a) N. Kuhl, N. Schrö der, F. Glorius, Org. Lett. 2013, 15, 3860; b) K. D.
Collins, F. Glorius, Tetrahedron 2013, 69, 7817; c) W. Li, Z. Fan, K.
Geng, Y. Xu, A. Zhang, Org. Biomol. Chem. 2015, 13, 539; d) J.
Hernández, C. Bolm, Chem. Commun. 2015, 51, 12582; e) Q. Ding, X.
Zhou, S. Pu, B. Cao, Tetrahedron 2015, 71, 2376; f) P. Zhang, L. Hong,
G. Li, R. Wang, Adv. Synth. Catal. 2015, 357, 345; g) K. Kim, J. Hyun, J.
Kim, H. Kim, Asian J. Org. Chem. 2016, 5, 1107; h) Q. Peng, J. Hu, J.
Huo, H. Yuan, L. Xu, X. Pan, Org. Biomol. Chem. 2018, 16, 4471; i) A.
K. Dhiman, S. S. Gupta, R. Sharma, R. Kumar, U. Sharma, J. Org.
Chem. 2019, 84, 12871.
[19] Upon
the
formation
of
hydrogen
bonds,
1,1,1,3,3,3-
hexafluoroisopropanol can lower the activation energy of the reductive
elimination step in the IrIII-catalyzed ortho-iodination of benzoic acids
with N-iodosuccinimide. See: ref 10c.
This article is protected by copyright. All rights reserved.