C O M M U N I C A T I O N S
Table 1. Outcome of Precipiton-Based Solution-Phase
mixture prematurely and thereby diminish yields and (2) that the
precipiton-bound urea formed from the excess amine and isocyanate
4 would be so insoluble that the amount remaining after filtration
would be negligible. Typical times for going from starting amine
to isolated urea were less than 1 h: 5-10 min for the reaction to
take place between the amine and isocyanate/isothiocyanate, 5-10
min for the scavenger to react with the excess amine, and 30-40
min for the isomerization, filtration, and evaporation to give pure
urea.
Synthesesa
Amides and imines were synthesized by reactions of acid
chlorides and aldehydes, respectively, with excess amine (1.2 equiv)
in the presence of K2CO3 or MgSO4 in THF. The overall times
required for imine synthesis were about 4.5 h: 3.5 h for imine
formation, 10 min for reaction with the scavenging precipiton, and
1 h for the isomerization and filtration. These isomerization times
could be shortened by removing solid K2CO3 or MgSO4 from the
mixture before the irradiation.
We hope that this method will be useful to those engaged in
parallel solution-phase library synthesis. Because all trapping
reactions are performed in solution, experiment times are much
shorter compared to scavenging conducted with solid supported
scavengers and fewer equivalents of isocyanate are required.
Acknowledgment. This work was supported by funds provided
by the Faculty and College of Arts and Sciences, University of
Pittsburgh.
Supporting Information Available: Experimental details, copies
of 1H and 13C NMR spectra, and complete characterization data for all
compounds (PDF). This material is available free of charge via the
References
(1) (a) Gallop, M. A.; Barrett, R. W.; Dower, W. J.; Fodor, S. P. A.; Gordon,
E. M. J. Med. Chem. 1994, 37, 1233. (b) Gallop, M. A.; Barrett, R. W.;
Dower, W. J.; Fodor, S. P. A.; Gordon, E. M. J. Med. Chem. 1994, 37,
1385. (c) Wendeborn, S.; De Mesmaeker, A.; Brill, W. K.-D.; Berteina,
S. Acc. Chem. Res. 2000, 33, 215. (d) Lazo, J. S.; Wipf, P. J. Pharm.
Exp. Ther. 2000, 293, 705.
(2) (a) Furka, A.; Sebestye´n, F.; Asgedom, M.; Dibo´, G. Int. J. Pept. Protein
Res. 1991, 37, 487. (b) Lam, K. S.; Lebl, M.; Krchna´k, V. Chem. ReV.
1997, 97, 411.
(3) Vaino, A. R.; Janda, K. D. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 7692.
(4) (a) Curran, D. P. Angew. Chem., Int. Ed. Engl. 1998, 37, 1174. (b) Link,
A. Angew Chem., Int. Ed. 2000, 39, 4039.
(5) (a) Studer, A.; Hadida, S.; Ferritto, R.; Kim, S.-Y.; Jeger, P.; Wipf, P.;
Curran, D. P. Science 1997, 275, 823. (b) Luo, Z.; Zhang, Q.; Oderaotoshi,
Y.; Curran, D. P. Science 2000, 291, 1766.
(6) (a) Gravert, D. J.; Janda, K. D. Chem. ReV. 1997, 97, 489. (b) Toy, P. H.;
Janda, K. D. Acc. Chem. Res. 2000, 33, 546.
(7) (a) Kim, R. M.; Manna, M.; Hutchins, S. M.; Griffin, P. R.; Yates, N. A.;
Bernick, A. M.; Chapman, K. T. Proc. Natl. Acad. Sci. U.S.A. 1996, 93,
10012. (b) Malenfant, P. R. L.; Jayaraman, M.; Fre´chet, J. M. J. Chem.
Mater. 1999, 11, 3420.
(8) (a) Perrier, H.; Labelle, M. J. Org. Chem. 1999, 64, 2110. (b) Yoshida,
J.; Itami, K.; Mitsudo, K.; Suga, S. Tetrahedron Lett. 1999, 40, 3403.
(9) Ley, S. V.; Massi, A.; Rodr´ıguez, F.; Harwell, D. C.; Lewthwaite, R. A.;
Pritchard, M. C.; Reid, A. M. Angew. Chem., Int. Ed. 2001, 40, 1053.
(10) (a) Bosanac, T.; Yang, J.; Wilcox, C. S. Angew. Chem., Int. Ed. 2001,
40, 1875. (b) Bosanac, T.; Wilcox, C. S. Tetrahedron Lett. 2001, 42, 4309.
(c) Bosanac, T.; Wilcox, C. S. Chem. Commun. 2001, 1618.
(11) (a) Booth, R. J.; Hodges, J. C. J. Am. Chem. Soc. 1997, 119, 4882. (b)
Booth, R. J.; Hodges, J. C. Acc. Chem. Res. 1999, 32, 18. (c) Thompson,
L. A. Curr. Opin. Chem. Biol 2000, 4, 324. (d) Eames, J.; Watkinson, M.
Eur. J. Org. Chem. 2001, 1213.
a All reactions were carried out with 1.1 equiv of scavenger 4 relative
to excess amine. Purities of isolated products were >95% by 1H NMR.
Reactions were carried out in THF (entries 1, 2, 7, 11-16) or Et2O/THF
mixtures (entries 3-6, 8-10). For entries 12-16, reaction mixtures were
diluted with Et2O prior to addition of the scavenger.
(12) Kaldor, S. W.; Siegel, M. G.; Fritz, J. E.; Dressman, B. A.; Hahn, P. J.
Tetrahedron Lett. 1996, 37, 7193.
(13) (a) Ley, S. V.; Baxendale, I. R.; Bream, R. N.; Jackson, P. S.; Leach, A.
G.; Longbottom, D. A.; Nesi, M.; Scott, J. S.; Storer, R. I.; Taylor, S. J.
J. Chem. Soc., Perkin Trans. 1 2000, 3815. (b) Kirschning, A.; Monen-
schein, H.; Wittenberg, R. Angew. Chem., Int. Ed. 2001, 40, 650.
(14) (a) Suzuki, A. Acc. Chem. Res. 1982, 15, 178. (b) Miyaura, N.; Suzuki,
A. Chem. ReV. 1995, 95, 2457.
simple. Except for the final filtration, no manipulations of the
reaction solutions (transfers, extractions, liquid-liquid partitions)
were required, and the syntheses involved only consecutive
additions of solvents and reagents to a single vessel.
The solvents chosen for the urea syntheses fulfill two require-
ments: (1)11a that products would not precipitate from the reaction
(15) (a) Nowick, J. S.; Holmes, D. L.; Noronha, G.; Smith, E. M.; Nguyen, T.
M.; Huang, S.-L. J. Org. Chem. 1996, 61, 3929. (b) McMinn, D. L.;
Greenberg, M. M. J. Am. Chem. Soc. 1998, 120, 3289.
JA017577G
9
J. AM. CHEM. SOC. VOL. 124, NO. 16, 2002 4195