5 (a) S. Shinkai, T. Nishi and T. Matsuda, Chem. Lett., 1991,
437–440; (b) T. Nishi, A. Ikeda, T. Matsuda and S. Shinkai,
J. Chem. Soc., Chem. Commun., 1991, 339–341; (c) R. A.
van Delden and B. L. Feringa, Chem. Commun., 2002, 174–175.
6 (a) Y. Iwashita, K. Sugiyasu, M. Ikeda, N. Fujita and S. Shinkai,
Chem. Lett., 2004, 1124–1125; (b) T. Tu, W. W. Fang, X. L. Bao,
X. B. Li and K. H. Dotz, Angew. Chem., Int. Ed., 2011, 50,
6601–6605.
7 K. Hirose, Y. Yachi and Y. Tobe, Chem. Commun., 2011, 47,
6617–6619.
8 (a) D. H. Metcalf, S. W. Snyder, J. N. Demas and
F. S. Richardson, J. Am. Chem. Soc., 1990, 112, 5681–5695;
(b) D. P. Gloverfischer, D. H. Metcalf, J. P. Bolender and
F. S. Richardson, Chem. Phys., 1995, 198, 207–234; (c) L. Pu,
Chem. Rev., 2004, 104, 1687–1716; (d) C. D. Tran and D. Oliveira,
Anal. Biochem., 2006, 356, 51–58.
9 (a) P. Tielmann, M. Boese, M. Luft and M. T. Reetz, Chem.–Eur. J.,
2003, 9, 3882–3887; (b) C. D. Tran, D. Oliveira and V. I. Grishko,
Anal. Biochem., 2004, 325, 206–214; (c) H. L. Liu, Q. Peng,
Y. D. Wu, D. Chen, X. L. Hou, M. Sabat and L. Pu, Angew.
Chem., Int. Ed., 2010, 49, 602–606.
10 G. Fukuhara and Y. Inoue, Chem. Commun., 2012, 48, 1641–1643.
11 (a) M. M. Green, N. C. Peterson, T. Sato, A. Teramoto, R. Cook
and S. Lifson, Science, 1995, 268, 1860–1866; (b) K. Nagai,
K. Maeda, Y. Takeyama, T. Sato and E. Yashima, Chem.–Asian
J., 2007, 2, 1314–1321; (c) A. R. A. Palmans and E. W. Meijer,
Angew. Chem., Int. Ed., 2007, 46, 8948–8968.
12 Although Swager et al. reported the fluorescent sensors based on
PPEs bearing 15-crown-5 appendages, the mechanism of fluores-
cence quenching is different from that of the present work: J. Kim,
D. T. McQuade, S. K. McHugh and T. M. Swager, Angew. Chem.,
Int. Ed., 2000, 39, 3868–3872.
13 U. H. F. Bunz, Macromol. Rapid Commun., 2009, 30, 772–805.
14 (a) T. M. Swager, Acc. Chem. Res., 1998, 31, 201–207; (b) A. Rose,
J. D. Tovar, S. Yamaguchi, E. E. Nesterov, Z. Zhu and
T. M. Swager, Philos. Trans. R. Soc. London, Ser., A, 2007, 365,
1589–1606; (c) S. W. Thomas, G. D. Joly and T. M. Swager, Chem.
Rev., 2007, 107, 1339–1386; (d) Y. Liu, K. Ogawa and
K. S. Schanze, J. Photochem. Photobiol., C, 2009, 10, 173–190.
15 (a) K. Naemura, J. Fuji, K. Ogasahara, K. Hirose and Y. Tobe,
Chem. Commun., 1996, 2749–2750; (b) K. Hirose, K. Ogasahara,
K. Nishioka, Y. Tobe and K. Naemura, J. Chem. Soc., Perkin
Trans. 2, 2000, 1984–1993; (c) K. Hirose, T. Nakamura,
R. Nishioka, T. Ueshige and Y. Tobe, Tetrahedron Lett., 2003,
44, 1549–1551; (d) K. Hirose, P. Aksharanandana, M. Suzuki,
K. Wada, K. Naemura and Y. Tobe, Heterocycles, 2005, 66,
405–431.
16 (a) K. Hirose, A. Fujiwara, K. Matsunaga, N. Aoki and Y. Tobe,
Tetrahedron: Asymmetry, 2003, 14, 555–566; (b) Y. Z. Jin,
K. Hirose, T. Nakamura, R. Nishioka, T. Ueshige and Y. Tobe,
J. Chromatogr. A, 2006, 1129, 201–207.
17 K. Hirose, J. Inclusion Phenom., 2001, 39, 193–209.
18 KSV and KSV app of polymer (S,S)-1 shown are per unit of
monomer.
Fig. 2 Stern–Volmer plot for the quenching of the fluorescence of
(S,S)-1 (K) and (S,S)-2 (’) with (R)- (black) and (S)-2-amino-1-
propanol (gray) in CH2Cl2 at 20 1C.
both enantiomers was amplified by similar magnitude as
shown in Fig. S4-25 in ESI.w For VLO, KSV app of (S,S)-1
(5.1 ꢀ 102 Mꢁ3 and 1.0 ꢀ 102 Mꢁ1) increased by one order of
magnitude (2.7 ꢀ 10 Mꢁ3 and 1.0 ꢀ 10 Mꢁ1). In addition, the
enantioselectivity (KSV(R) app/KSV(S) app) improved from 2.6 to
5.1. Although the fluorescent quenching mechanism of (S,S)-1
was not clearly determined,22 the quenching efficiency is enhanced
compared to that of the corresponding monomer (S,S)-2. More
interestingly, the apparent enantioselectivity of the polymer can be
significantly enhanced at relatively low guest concentration as
exemplified for 2APO and VLO.
In conclusion, based on the nonlinear response of molecular
wire (S,S)-1 as exemplified in Fig. 2, we have demonstrated a
highly selective chirality recognition of chiral amine guests in
homogeneous solution by binding constants and the ratios
shown in Table 1. The fluorescence of (S,S)-1 was quenched upon
complexation with amine guests. At relatively low guest concen-
tration, the molecular wire showed both amplified sensitivity and
enantioselectivity compared to the model monomer (S,S)-2.
This work was financially supported by the Japan Science and
Technology Agency through a CREST project and Grant-in-Aid
of the Ministry of Education, Culture, Sports, Science and
Technology of Japan. The authors thank Dr Takehiro Kitaura,
and Professor Tatsuki Kitayama of Osaka University for the use
of the instruments.
Notes and references
19 (a) K. Naemura, Y. Nishikawa, J. Fuji, K. Hirose and Y. Tobe,
Tetrahedron: Asymmetry, 1997, 8, 873–882; (b) K. Naemura,
K. Matsunaga, J. Fuji, K. Ogasahara, Y. Nishikawa, K. Hirose
and Y. Tobe, Anal. Sci., 1998, 14, 175–182.
1 (a) C. J. Welch, T. Szczerba and S. R. Perrin, J. Chromatogr., A,
1997, 758, 93–98; (b) C. J. Welch, F. Fleitz, F. Antia, P. Yehl,
R. Waters, N. Ikemoto, J. D. Armstrong and D. J. Mathre, Org.
Process Res. Dev., 2004, 8, 186–191.
20 (I0/I) = 1 + K[G]. When (I0/I) is proportional to [G], Ksv is
obtained from the slope K. Apparent Ksv (=Ksv app) is obtained
from ((I0/I) ꢁ 1)/[G] for (S,S)-1 with guest concentration.
21 UV-vis spectra of (S,S)-1 in CH2Cl2 were not affected by concentration
in the range of 2.0 ꢀ 10ꢁ6–4.0 ꢀ 10ꢁ5 M.
2 (a) T. J. Wenzel and J. D. Wilcox, Chirality, 2003, 15, 256–270; (b) J. M.
Seco, E. Quinoa and R. Riguera, Chem. Rev., 2004, 104, 17–117.
3 (a) M. Sawada, Y. Okumura, M. Shizuma, Y. Takai, Y. Hidaka,
H. Yamada, T. Tanaka, T. Kaneda, K. Hirose, S. Misumi and
S. Takahashi, J. Am. Chem. Soc., 1993, 115, 7381–7388; (b) C. T.
Martha, N. Elders, J. G. Krabbe, J. Kool, W. M. A. Niessen, R. V. A.
Orru and H. Irth, Anal. Chem., 2008, 80, 7121–7127.
22 The Stern–Volmer plots of (S,S)-1 with (S)- and (R)-2APO show
positive deviations from predictive linear behaviours. In order to
determine the mechanism, curve approximations were carried out
by applying a static quenching model, a dynamic quenching model,
and the combined model of static and dynamic mechanisms.
4 (a) H. G. Lohr and F. Vogtle, Acc. Chem. Res., 1985, 18, 65–72;
¨
(b) T. Kaneda, K. Hirose and S. Misumi, J. Am. Chem. Soc., 1989,
111, 742–743; (c) Y. Kubo, S. Maeda, S. Tokita and M. Kubo,
Nature, 1996, 382, 522–524; (d) D. Leung, J. F. Folmer-Andersen,
V. M. Lynch and E. V. Anslyn, J. Am. Chem. Soc., 2008, 130,
12318–12327; (e) S. O. Fakayode, P. N. Brady, D. A. Pollard,
A. K. Mohammed and I. M. Warner, Anal. Bioanal. Chem., 2009,
394, 1645–1653.
¨
Models of the Forster resonance energy transfer mechanism and
Dexter energy transfer mechanism for fluorescent quenching were
also applied assuming that the binding constant (K) of one receptor
site in (S,S)-1 is same as that of (S,S)-2. However, none of the
models fit the experimental data.
c
6054 Chem. Commun., 2012, 48, 6052–6054
This journal is The Royal Society of Chemistry 2012