Journal of the American Chemical Society
Communication
(2) (a) Burns, C. J.; Smith, W. H.; Huffman, J. C.; Sattelberger, A. P.
J. Am. Chem. Soc. 1990, 112, 3237−3239. (b) Arney, D. S. J.; Burns, C.
J. J. Am. Chem. Soc. 1993, 115, 9840−9841. (c) Arney, D. S. J.; Burns,
C. J. J. Am. Chem. Soc. 1995, 117, 9448−9460. (d) Stewart, J. L.;
Andersen, R. A. New J. Chem. 1995, 19, 587−595. (e) Diaconescu, P.
L.; Arnold, P. L.; Baker, T. A.; Mindiola, D. J.; Cummins, C. C. J. Am.
Chem. Soc. 2000, 122, 6108−6109. (f) Jilek, R. E.; Spencer, L. P.;
Kuiper, D. L.; Scott, B. L.; Williams, U. J.; Kikkawa, J. M.; Schelter, E.
J.; Boncella, J. M. Inorg. Chem. 2011, 50, 4235−4237.
(3) (a) Zalkin, A.; Brennan, J. G.; Andersen, R. A. Acta Crystallogr.,
Sect. C 1988, 44, 1553−1554. (b) Bart, S. C.; Anthon, C.; Heinemann,
F. W.; Bill, E.; Edelstein, N. M.; Meyer, K. J. Am. Chem. Soc. 2008, 130,
12536−12546. (c) Graves, C. R.; Yang, P.; Kozimor, S. A.; Vaughn, A.
E.; Clark, D. L.; Conradson, S. D.; Schelter, E. J.; Scott, B. L.;
Thompson, J. D.; Hay, P. J.; Morris, D. E.; Kiplinger, J. L. J. Am. Chem.
Soc. 2008, 130, 5272−5285.
For further comparison, we attempted to prepare bis(imido)-
uranium(V) complexes containing redox-inactive ligands. Thus,
the reaction of UCl4 with 3 equiv of triphenylphosphine oxide
(tppo) and 4 equiv of LiNHDipp in the presence of CH2Cl2
provided U(NDipp)2Cl(tppo)3 (5). The successful isolation of
5 from UCl4 shows that the presence of a potentially redox-
active ligand such as bpy is not necessary for the oxidation to
U(V) and is consistent with the reaction occurring from a
U(IV) intermediate. While 5 has been structurally characterized
(Figure S12), we have been unable to separate this compound
from the U(VI) byproduct U(Ndipp)2Cl2(tppo)2, which forms
regardless of the amount of dichloromethane present. Thus, it
appears that further oxidation of the bis(imido)uranium(V)
complex via halogen abstraction is a more facile reaction when
tppo is coordinated. Qualitatively, this indicates that 5 is even
more electron-rich than its bipyridine analogues 1−3.16
We have presented facile syntheses of a series of bis(imido)-
uranium(V) complexes, U(NDipp)2X(R2bpy)2 (X = Cl, Br, I; R
= Me, tBu) and U(NDipp)2Cl(tppo)3, from uranium
tetrachloride and lithium 2,6-diisopropylphenylamide. These
reactions proceed via salt metathesis and subsequent oxidation
via halogen atom abstraction, resulting in the first monomeric
bis(imido)uranium(V) species. Most notably, the products
appear to be generated via extremely reactive intermediates.
While these intermediates remain uncharacterized, their
reactivity is consistent with bis(imido)uranium(IV) com-
pounds, which present an intriguing target for future synthetic
studies. We have reported the first electrochemical data on
bis(imido)uranium complexes, which indicate highly electron-
rich uranium(V) centers. Importantly, the ease with which
these molecules are prepared from tetravalent precursors
suggests that this methodology could be applied to transuranic
compounds, which would greatly enhance our understanding of
AnN multiple bonding.
(4) (a) Arney, D. S. J.; Burns, C. J.; Smith, D. C. J. Am. Chem. Soc.
1992, 114, 10068−10069. (b) Warner, B. P.; Scott, B. L.; Burns, C. J.
Angew. Chem., Int. Ed. 1998, 37, 959−960. (c) Hayton, T. W.;
Boncella, J. M.; Scott, B. L.; Palmer, P. D.; Batista, E. R.; Hay, P. J.
Science 2005, 310, 1941−1943.
(5) (a) Arnold, P. L.; Patel, D.; Wilson, C.; Love, J. B. Nature 2008,
451, 315−318. (b) Berthet, J.; Nierlich, M.; Ephritikhine, M. Angew.
Chem., Int. Ed. 2003, 42, 1952−1954. (c) Berthet, J.; Siffredi, G.;
Thuery, P.; Ephritikhine, M. Dalton Trans. 2009, 3478−3494.
(d) Mougel, V.; Horeglad, P.; Nocton, G.; Pecaut, J.; Mazzanti, M.
Angew. Chem., Int. Ed. 2009, 48, 8477−8480. (e) Hayton, T. W.; Wu,
G. J. Am. Chem. Soc. 2008, 130, 2005−2014. (f) Arnold, P. L.; Hollis,
E.; White, F. J.; Magnani, N.; Caciuffo, R.; Love, J. B. Angew. Chem.,
Int. Ed. 2011, 50, 887−890. (g) Graves, C. R.; Kiplinger, J. L. Chem.
Commun. 2009, 3831−3853. (h) Arnold, P. L.; Love, J. B.; Patel, D.
Coord. Chem. Rev. 2009, 253, 1973−1978.
(6) Spencer, L. P.; Schelter, E. J.; Yang, P.; Gdula, R. L.; Scott, B. L.;
Thompson, J. D.; Kiplinger, J. L.; Batista, E. R.; Boncella, J. M. Angew.
Chem. 2009, 121, 3853−3856.
(7) Eller, P. G.; Vergamini, P. J. Inorg. Chem. 1983, 22, 3184−3189.
(8) Regardless of the Lewis base, the chemical shifts at 5.6, 13.4, and
25.4 ppm remained constant for U(NDipp)2X(L)y compounds. Our
assignments are based on this fact as well as on NMR integrations.
(9) Compounds 1a−3a are quite soluble in most organic solvents,
and for this reason they are difficult to isolate in appreciable yields.
(10) (a) Wiley, R. O.; Von Dreele, R. B.; Brown, T. M. Inorg. Chem.
1980, 19, 3351−3356. (b) Kraft, S. J.; Fanwick, P. E.; Bart, S. C. Inorg.
Chem. 2010, 49, 1103−1110. The average C−Cbridge distance is
1.486(9) Å, which is statistically identical to the corresponding
distance in free 2,2′-bpy [1.490(3) Å]. This distance is much shorter in
complexes containing coordinated bpy radical anions.
ASSOCIATED CONTENT
* Supporting Information
■
S
Complete details of the preparation and characterization of 1−
4, including X-ray crystallographic details for 1b−3b, 4, and 5
(CIF), and electrochemical data for 2. This material is available
AUTHOR INFORMATION
Corresponding Author
(11) Emsley, J. The Elements, 3rd ed.; Oxford University Press:
Oxford, U.K., 1998.
(12) Morris, D. E. Inorg. Chem. 2002, 41, 3542−3547.
(13) Burns, C. J.; Smith, W. H.; Huffman, J. C.; Sattelberger, A. P. J.
Am. Chem. Soc. 1990, 112, 3237−3239.
(14) (a) Hayton, T. W.; Boncella, J. M.; Scott, B. L.; Batista, E. R.;
Hay, P. J. J. Am. Chem. Soc. 2006, 128, 10549−10559. (b) Spencer, L.
P.; Yang, P.; Batista, E. R.; Scott, B. L.; Boncella, J. M. Inorg. Chem.
2009, 48, 11615−11623.
(15) Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877−910.
(16) We observed no formation of U(VI) during the preparation of
compounds 1−3, even in the presence of excess dihalomethane.
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
R.E.J. thanks the Seaborg Institute (Los Alamos National
Laboratory) for fellowships to support his work. We also thank
the LANL LDRD Program for funding portions of this work.
T.W.H. thanks the Heavy Element Program of the DOE Office
of Basic Energy Sciences (BES) for support of the electro-
chemical experiments. J.M.B. and R.E.J. also thank the DOE
BES Heavy Element Progam at LANL for supporting the work
on the chemical oxidation of the U(V) complexes.
REFERENCES
■
(1) (a) Cramer, R. E.; Panchanatheswaran, K.; Gilje, J. W. J. Am.
Chem. Soc. 1984, 106, 1853−1854. (b) Brennan, J. G.; Andersen, R. A.
J. Am. Chem. Soc. 1985, 107, 514−516.
C
dx.doi.org/10.1021/ja2108432 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX