substituted naphtha[1,8-bc]pyrans as key structural motifs
of bioactive compounds13 and in optoelectronics,14 we
particularly became attracted by the use of unsymmetrical
alkynes for oxidative annulations with inexpensive ruthe-
nium catalysts.
utilized as the oxidant, provided that NaOAc was present
as an additive (entries 16À19), hence highlighting carbox-
ylate assistance to be of key importance.15,16
At the outset, we probed various reaction conditions
for the envisioned oxidative annulation of alkyne 2a by
R-naphthol (1a) (Table 1). Among a set of representative
solvents, t-AmOH, 1,4-dioxane, and toluene furnished
promising results, while optimal yields were obtained with
m-xylene (entries 1À11). Interestingly, an increase of the
reaction temperature led to a decreased yield of the desired
product 3aa (entries 11 and 12), and an aerobic oxidative
annulation under an atmosphere of ambient air proved
viable (entries 13À15). Furthermore, CuBr2 could be
Table 1. Hydroxyl Assistance for Oxidative Annulationa
T
yield
(%)
entry
solvent
DMSO
oxidant
(°C)
1
Cu(OAc)2 H2O
80
80
80
80
80
80
80
80
80
80
80
110
80
80
80
À
3
(3) For pertinent examples, see: (a) Simmons, E. M.; Hartwig, J. F.
Nature 2012, 483, 70–73. (b) Lu, Y.; Leow, D.; Wang, X.; Engle, K. M.;
Yu, J.-Q. Chem. Sci. 2011, 2, 967–971. (c) Wei, Y.; Yoshikai, N. Org.
Lett. 2011, 13, 5504–5507. (d) Xiao, B.; Gong, T.-J.; Liu, Z.-J.; Liu,
J.-H.; Luo, D.-F.; Xu, J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 9250–
9253. (e) Wang, X.; Lu, Y.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc.
2010, 132, 12203–12205. (f) Morimoto, K.; Hirano, K.; Satoh, T.;
Miura, M. J. Org. Chem. 2011, 76, 9548–9551. (g) Lewis, J. C.; Wu, J.;
Bergman, R. G.; Ellman, J. A. Organometallics 2005, 24, 5737–5746. (h)
Bedford, R. B.; Coles, S. J.; Hursthouse, M. B.; Limmert, M. E. Angew.
Chem., Int. Ed. 2003, 42, 112–114. (i) Kawamura, Y.; Satoh, T.; Miura,
M.; Nomura, M. Chem. Lett. 1999, 961–962. (j) Satoh, T.; Kawamura,
Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. Engl. 1997, 36,
1740–1742 and references cited therein.
2
NMP
Cu(OAc)2 H2O
À
3
3
DCE
Cu(OAc)2 H2O
18
11
5
3
4
H2O
Cu(OAc)2 H2O
3
5
AcOH
Cu(OAc)2 H2O
3
6
DMF
Cu(OAc)2 H2O
26
33
59
42
66
89
55
3
7
DME
Cu(OAc)2 H2O
3
8
t-AmOH
1,4-dioxane
PhMe
Cu(OAc)2 H2O
3
9
Cu(OAc)2 H2O
3
10
11
12
13
14
15
Cu(OAc)2 H2O
3
m-xylene
m-xylene
m-xylene
m-xylene
m-xylene
Cu(OAc)2 H2O
3
Cu(OAc)2 H2O
3
b
Cu(OAc)2 H2O
À
(4) [{Cp*RhCl2}2]: h 638 versus [{RuCl2(p-cymene)}2]: h 77 (2.0 g,
SigmaÀAldrich, 19.05.2012).
3
c
Cu(OAc)2 H2O
À
3
Cu(OAc)2 H2O
45d
(5) Amides: (a) Ackermann, L.; Lygin, A. V.; Hofmann, N. Angew.
Chem., Int. Ed. 2011, 50, 6379–6382. (b) Ackermann, L.; Lygin, A. V.;
Hofmann, N. Org. Lett. 2011, 13, 3278–3281. (c) Hashimoto, Y.;
Ueyama, T.; Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. Chem.
Lett. 2011, 40, 1165–1166.
3
(20 mol %)
16
17
18
19
m-xylene
m-xylene
m-xylene
m-xylene
CuBr2
80
80
80
80
À
CuBr2/NaOAce
41
89f
74g
(6) Acids: (a) Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153–
4155. (b) Ackermann, L.; Pospech, J.; Graczyk, K.; Rauch, K. Org. Lett.
2012, 14, 930–933. (c) Chinnagolla, R. K.; Jeganmohan, M. Chem.
Commun. 2012, 48, 2030–2032. See also: (d) Ueyama, T.; Mochida, S.;
Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2011, 13, 706–
708. (e) Ketones: Chinnagolla, R. K.; Jeganmohan, M. Eur. J. Org.
Chem. 2012, 417–423.
(7) (a) (NH)-Azoles: Ackermann, L.; Wang, L.; Lygin, A. V. Chem.
Sci. 2012, 3, 177–180. (b) Anilides: Ackermann, L.; Lygin, A. V. Org.
Lett. 2012, 14, 764–767.
Cu(OAc)2•H2O
Cu(OAc)2 H2O
3
a Reaction conditions: 1a (1.0 mmol), 2a (0.5 mmol), oxidant
(1.0 mmol), [RuCl2(p-cymene)]2 (5.0 mol %), solvent (3.0 mL); isolated
yields. b Without [RuCl2(p-cymene)]2. c Without Cu(OAc)2 H2O.
3
d Under air (1 atm), GC-conversion. e NaOAc (1.5 mmol). f [RuCl2(p-
cymene)]2 (2.0 mol %). g 1a (0.5 mmol), 2a (1.0 mmol).
(8) N-Methoxybenzamides: (a) Ackermann, L.; Fenner, S. Org. Lett.
2011, 13, 6548–6551. (b) Li, B.; Ma, J.; Wang, N.; Feng, H.; Xu, S.;
Wang, B. Org. Lett. 2012, 14, 736–739.
With an optimized catalytic system in hand, we tested its
scope in the oxidative annulation of alkynes 2 by naphthol
derivatives 1 (Scheme 1). The ruthenium(II) catalyst al-
lowed for the efficient conversion of decorated substrates 1
and displayed a remarkable tolerance of valuable electrophilic
(9) Selected oxidative alkenylations: (a) Ackermann, L.; Wang, L.;
Wolfram, R.; Lygin, A. V. Org. Lett. 2012, 14, 728–731. (b) Arockiam,
P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Green Chem. 2011,
13, 3075–3078. (c) Hashimoto, Y.; Hirano, K.; Satoh, T.; Kakiuchi, F.;
Miura, M. Org. Lett. 2012, 14, 2058–2061. (d) Kwon, K.-H.; Lee, D. W.;
Yi, C. S. Organometallics 2010, 29, 5748–5750. (e) Weissman, H.; Song,
X.; Milstein, D. J. Am. Chem. Soc. 2001, 123, 337–338 and references
cited therein.
(10) For recent dehydrative (non-oxidative) direct alkylations, see:
Lee, D.-H.; Kwon, K.-H.; Yi, C. S. J. Am. Chem. Soc. 2012, 134, 7325–
7328.
(11) Recent reviews: (a) Ackermann, L. Pure Appl. Chem. 2010,
82, 1403–1413. (b) Ackermann, L. Isr. J. Chem. 2010, 50, 652–663.
(c) Ackermann, L.; Vicente, R. Top. Curr. Chem. 2010, 292, 211–229.
(12) Mochida, S.; Shimizu, M.; Hirano, K.; Satoh, T.; Miura, M.
Chem.;Asian J. 2010, 5, 847–851.
(13) Representative examples: (a) Shin, D.-Y.; Kim, S. N.; Chae,
J.-H.; Hyun, S.-S.; Seo, S.-Y.; Lee, Y.-S.; Lee, K.-O.; Kim, S.-H.; Lee,
Y.-S.; Jeong, J. M.; Choi, N.-S.; Suh, Y.-G. Bioorg. Med. Chem. Lett.
2004, 14, 4519–4523. (b) Suh, Y.-G.; Shin, D.-Y.; Min, K.-H.; Hyun,
S.-S.; Jung, J.-K.; Seo, S.-Y. Chem. Commun. 2000, 1203–1204.
(14) Selected examples: (a) Tyson, D. S.; Fabrizio, E. F.; Panzner,
M. J.; Kinder, J. D.; Buisson, J.-P.; Christensen, J. B.; Meador, M. A.
J. Photochem. Photobiol. A 2005, 172, 97–107. (b) Christensen, J. B.;
Johannsen, I.; Bechgaard, K. J. Org. Chem. 1991, 56, 7055–7058.
(15) Examples of carboxylate-assisted ruthenium-catalyzed aryla-
tions and alkylations: (a) Ackermann, L.; Pospech, J.; Potukuchi,
H. K. Org. Lett. 2012, 14, 2146–2149. (b) Ackermann, L.; Diers, E.;
Manvar, A. Org. Lett. 2012, 14, 1154–1157. (c) Ackermann, L.; Lygin,
A. Org. Lett. 2011, 13, 3332–3335. (d) Ouellet, S. G.; Roy, A.; Molinaro,
C.; Angelaud, R.; Marcoux, J.-F.; O’Shea, P. D.; Davies, I. W. J. Org.
Chem. 2011, 76, 1436–1439. (e) Ackermann, L.; Vicente, R.; Potukuchi,
H. K.; Pirovano, V. Org. Lett. 2010, 12, 5032–5035. (f) Arockiam, P.;
Poirier, V.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Green Chem.
2009, 11, 1871–1875. (g) Ackermann, L.; Vicente, R. Org. Lett. 2009, 11,
ꢀ
4922–4925. (h) Ackermann, L.; Novak, P. Org. Lett. 2009, 11, 4966–
4969. (i) Ackermann, L.; Vicente, R.; Althammer, A. Org. Lett. 2008, 10,
2299–2302.
(16) A review: (a) Ackermann, L. Chem. Rev. 2011, 111, 1315–1345.
Examples of acetate-assisted stoichiometric cyclometalations: (b) Duff,
J. M.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1972, 2219–2225. (c)
Davies, D. L.; Al-Duaij, O.; Fawcett, J.; Giardiello, M.; Hilton, S. T.;
Russell, D. R. Dalton Trans. 2003, 4132–4138.
B
Org. Lett., Vol. XX, No. XX, XXXX