atom-economy and mild conditions in modern organic
chemistry.4 Recently, an intermolecular cascade cyclo-
isomerization/DielsÀAlder reaction catalyzed by gold
to form polycyclic compounds has been reported by
Barluenga.5 The sequences went through the exo- or
endo-cycloisomerization and finally generated the poly-
cyclic products by DielsÀAlder reaction.
best of our knowledge, such cascade reactions have rarely
been reported in the literature.9,10 Herein, we report a
successful realization of this hypothesis and the details of
our discovery.
Scheme 1. Proposed Tandem Catalytic 5-Exo-Dig Cycloisome-
rization/DielsÀAlder Reaction
Inspired by this intriguing study and in continuation of
our work on the synthesis of heterocyclic compounds,6 we
envisioned that the treatment of the easily prepared hydroxy
enynes with gold catalyst would generate interesting
oxanorbornenes (scheme 1), which are very valuable syn-
thetic intermediates in a huge number of ring-opening
reactions to the synthesis of biologically active com-
pounds.7 This process would involve an initial 5-exo-dig
cyclization to form an enol ether intermediate in a highly
regioselective manner,8 which may be in equilibrium with
isobenzofuran,9 and thenfollowedaDielsÀAlderreaction.
To our surprise, besides the desired oxanorbornene com-
pound, a naphthalene compound was also formed. To the
Initially, optimization studies of this transformation
started with hydroxy enyne 1a as the model substrate
(Table 1 and Table S1 in the Supporting Information).
To our delight, 1a in the presence of 5 mol % of PicAuCl2
in 1,4-dioxane at 100 °C gave an oxanorbornene product
epoxybenzo[f]isoquinoline 2a in 65% yield after 2 h (entry
1). A variety of gold catalysts were then screened, and
[BMIM][AuCl4]11 was proven to be the most efficient
(entries 2À5). When [BMIM]AuCl4 loading was decreased
from 5 to 2.5 mol %, the yield was decreased (entry 6).
Other solvents such as THF, MeCN, and toluene were
found to be less effective (see the Supporting Information).
When we decreased the temperature to room temperature,
a mainly 5-exo-dig cyclization product 4a was obtained
(entry 7). [BMIM]AuCl4/AgSbF6 was also applied to
the reaction, but no better result was obtained and a
(4) For recent selected reviews on gold-catalyzed reactions, see: (a)
Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. (b) Hashmi, A. S. K.
€
Chem. Rev. 2007, 107, 3180. (c) Furstner, A.; Davies, P. W. Angew.
Chem., Int. Ed. 2007, 46, 3410. (d) Arcadi, A. Chem. Rev. 2008, 108, 3266.
ꢀ
(e) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. (f) Jimenez-
ꢀꢁ
Nunez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (g) Gorin,
D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (h) Hashmi,
A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766. (i) Hashmi,
A. S. K. Angew. Chem., Int. Ed. 2010, 49, 5232. (j) Corma, A.; Leyva-
ꢀ
Perez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657. (k) Norbert, K.;
1
Christian, W. Chem. Rev. 2011, 111, 1994. (l) Xiao, J.; Li, X. Angew.
Chem., Int. Ed. 2011, 50, 7226. (m) Alcaide, B.; Almendros, P.; Alonso,
J. M. Org. Biomol. Chem. 2011, 9, 4405. (n) Alcaide, B.; Almendros, P.;
Alonso, J. M. Molecules 2011, 16, 7815. (o) Bandini, M. Chem. Soc. Rev.
2011, 40, 1358. (p) Rudolph, M.; Stephen, A.; Hashmi, K. Chem. Soc.
Rev. 2012, 41, 2448.
trace amount of 3a was detected by H NMR spectros-
copy (entry 8). Subsequently, the stepwise addition of
[BMIM]AuCl4 and AgSbF6 to the reaction mixture was
investigated (entry 9). Unexpectedly, 2a was not detected,
but a naphthalene product tetrahydrobenzo[f]isoquinoline
3a was isolated in 81% yield after 4 h. Neither changing Ag
sources nor temperature could obviously improve the yield
of 3a (see the Supporting Information). Compared with
the Lewis acid system, Brønsted acid p-TsOH was less
reactive and afforded lower yields of the product 3a (entry
11). Thus, the use of [BMIM]AuCl4 (5 mol %) in 1,4-
dioxane at 100 °C was considered to be an optimal reac-
tion condition to form 2a (conditions A), and the step-
wise addition of [BMIM]AuCl4 (5 mol %) and AgSbF6
(20 mol %) in 1,4-dioxane at 100 °C was found to be the
most efficient and was selected as the standard set of
conditions for 3a (conditions B).
~
ꢀ
(5) Barluenga, J.; Calleja, J.; Mendoza, A.; Rodrıguez, F.; Fananas,
F. J. Chem.;Eur. J. 2010, 16, 7110.
(6) (a) Lu, L.; Liu, X.-Y.; Shu, X.-Z.; Yang, K.; Ji, K.-G.; Liang,
Y.-M. J. Org. Chem. 2009, 74, 474. (b) Niu, Y.-N.; Yan, Z.-Y.; Gao,
G.-L.; Wang, H.-L.; Shu, X.-Z.; Ji, K.-G.; Liang, Y.-M. J. Org. Chem.
2009, 74, 2893. (c) Xie, Y.-X.; Yan, Z.-Y.; Qian, B.; Deng, W.-Y.; Wang,
D.-Z.; Wu, L.-Y.; Liu, X.-Y.; Liang, Y.-M. Chem. Commun. 2009, 5451.
(d) Shu, X.-Z.; Zhao, S.-C.; Ji, K.-G.; Zheng, Z.-J.; Liu, X.-Y.; Liang,
Y.-M. Eur. J. Org. Chem. 2009, 117.
(7) (a) Ikoma, M.; Oikawa, M.; Gill, M. B.; Swanson, G. T.; Sakai,
R.; Shimamoto, K.; Sasaki, M. Eur. J. Org. Chem. 2008, 5215. (b)
Schindler, C. S.; Diethelm, S.; Carreira, E. M. Angew. Chem., Int. Ed.
2009, 48, 6296. (c) Claeys, D. D.; Stevens, C. V.; Roman, B. I.; De
Caveye, P. V.; Waroquierb, M.; Van Speybroeck, V. Org. Biomol. Chem.
2010, 8, 3644.
(8) For the cycloisomerization of 2-(ethynyl)benzyl alcohol to form
5-exodig cyclization product, see: (a) Villemin, D.; Goussu, D. Hetero-
cycles 1989, 29, 1255. (b) Padwa, A.; Krumpe, K. E.; Weingarten, M. D.
J. Org. Chem. 1995, 60, 5595. (c) Khan, M. W.; Kundu, N. G. Synlett
1999, 456. (d) Hiroya, K.; Jouke, R.; Kameda, M.; Yasuhara, A.;
Sakamoto, T. Tetrahedron 2001, 57, 9697. (e) Lu, W.-D.; Lin, C.-F.;
Wang, C.-J.; Wang, S.-J.; Wu, M.-J. Tetrahedron 2002, 58, 7315. (f)
To define the scope of the tandem reaction, we next
turned our attention to the construction of oxanor-
bornenes under the optimal conditions A. Various
N-tethered, O-tethered, and C-tethered hydroxy enynes were
ꢀ
Bacchi, A.; Costa, M.; Ca, N. D.; Fabbricatore, M.; Fazio, A.; Gabriele,
B.; Nasi, C.; Salerno, G. Eur. J. Org. Chem. 2004, 574. (g) Berg, T. C.;
Bakken, V.; Gundersen, L.-L.; Petersen, D. Tetrahedron 2006, 62, 6121.
€
€
(h) Hashmi, A. S. K.; Schafer, S.; Wolfle, M.; Gil, C. D.; Fischer, P.;
Laguna, A.; Blanco, M. C.; Gimeno, M. C. Angew. Chem., Int. Ed. 2007,
46, 6184. (i) Yu, X.; Seo, S. Y.; Marks, T. J. J. Am. Chem. Soc. 2007, 129,
7244. (j) Seo, S. Y.; Yu, X.; Marks, T. J. J. Am. Chem. Soc. 2009, 131,
263. (k) Peng, P.; Tang, B.-X.; Pi, S.-F.; Liang, Y.; Li, J.-H. J. Org.
Chem. 2009, 74, 3569. (l) Zanardi, A.; Mata, J. A.; Peris, E. Organome-
tallics 2009, 28, 4335. (m) Praveen, C.; Iyyappan, P.; Perumal, P. T.
Tetrahedron Lett. 2010, 51, 4767. (n) Mancuso, R.; Mehta, S.; Gabriele,
B.; Salerno, G.; Jenks, W. S.; Larock, R. C. J. Org. Chem. 2010, 75, 897.
(9) Gabriele, B.; Salerno, G.; Fazio, A.; Pittelli, R. Tetrahedron 2003,
59, 6251.
(10) (a) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto,
Y. J. Am. Chem. Soc. 2002, 124, 12650. (b) Asao, N; Nogami, T.; Lee, S.;
Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 10921. (c) Asao, N.; Sato,
K.; Menggenbateer; Yamamoto, Y. J. Org. Chem. 2005, 70, 3682. (d)
Asao, N.; Sato, K. Org. Lett. 2006, 8, 5361. (e) Menon, S.; Sinha-
Mahapatra, D.; Herndon, J. W. Tetrahedron 2007, 63, 8788. (f) Kumar
Patti, R.; Duan, S.; Camacho-Davila, A.; Waynant, K.; Dunn, K. A.;
Herndon, J. W. Tetrahedron Lett. 2010, 51, 3682.
(11) The preparation for [BMIM][AuCl4], see: Hasan, M.;
V. Kozhevnikov, I.; Siddiqui, M. R. H.; Steiner, A.; Winterton, N.
Inorg. Chem. 1999, 38, 5637.
Org. Lett., Vol. 14, No. 13, 2012
3345