Organometallics
Communication
(n) Frazier, R. H., Jr.; Harlow, R. L. J. Org. Chem. 1980, 45, 5408.
(o) Ojima, I.; Brandstadter, S. M.; Donovan, R. J. Chem. Lett. 1992,
1591. (p) Kise, N.; Tokioka, K.; Aoyama, Y.; Matsumura, Y. J. Org.
Chem. 1995, 60, 1100. (q) Ivanoff, D.; Spassoff, A. Bull. Soc. Chim. Fr.
1935, 2, 76. (r) Wade, P. A.; Dailey, W. P.; Carroll, P. J. J. Am. Chem.
Soc. 1987, 109, 5452. (s) Bowman, W. R.; Brown, D. S.; Burns, C. A.;
Crosby, D. J. Chem. Soc., Perkin Trans. 1 1994, 2083. Enolate
heterocoupling: (t) DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am.
Chem. Soc. 2008, 130, 11546. Oxidative carbon−carbon bond
formation via silyl bis-enol ethers: (u) Clift, M. D.; Taylor, C. N.;
Thomson, R. J. Org. Lett. 2007, 9, 4667. (v) Avetta, C. T., Jr.; Konkol,
L. C.; Taylor, C. N.; Dugan, K. C.; Stern, C. L.; Thomson, R. J. Org.
Lett. 2008, 10, 5621.
(3) Pd-catalyzed arene intermolecular homo-/heterodimerization:
(a) Okamoto, M.; Yamaji, T. Chem. Lett. 2001, 212. (b) Brasche, G.;
García-Fortanet, J.; Buchwald, S. L. Org. Lett. 2008, 10, 2207.
(c) Hagelin, H.; Oslob, J. D.; Åkermark, B. Chem. Eur. J. 1999, 5, 2413.
Grignard homodimerization under O2: (d) Cahiez, G.; Moyeux, A.;
Buendia, J.; Duplais, C. J. Am. Chem. Soc. 2007, 129, 13788. (e) Maji,
M. S.; Pfeifer, T.; Studer, A. Angew. Chem., Int. Ed. 2008, 47, 9547.
Phenol dimerization under Cu/O2: (f) Sakamoto, T.; Yonehara, H.;
Pac, C. J. Org. Chem. 1994, 59, 6859. (g) Hewgley, J. B.; Stahl, S. S.;
Kozlowski, M. C. J. Am. Chem. Soc. 2008, 130, 12232. Arene
dimerization: (h) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2009, 131,
17052. (i) Truong, T.; Alvarado, J.; Tran, L. D.; Daugulis, O. Org. Lett.
2010, 12, 1200. (j) Niu, T.; Zhang, Y. Tetrahedron Lett. 2010, 51,
6847. (k) Li, Y.; Jin, J.; Qian, W.; Bao, W. Org. Biomol. Chem. 2010, 8,
326. (l) Monguchi, D.; Yamamura, A.; Fujiwara, T.; Somete, T.; Mori,
A. Tetrahedron Lett. 2010, 51, 850. Cu-catalyzed C−N bond
formation: (m) Hamada, T.; Ye, X.; Stahl, S. S. J. Am. Chem. Soc.
2008, 130, 833.
conversion. Further optimization led to the use of copper(II)
acetylacetonate catalyst. The optimized conditions involve 10
mol % of Cu(acac)2 catalyst, 0.3−0.5 equiv of ZnCl2 additive,
and 1 atm of oxygen, affording the desired product in 68%
isolated yield. The conditions work well for a variety of
carbonyl compounds such as ketones (Table 2, entries 1−4, 7),
esters (entry 5), and amides (entry 6).
Good results can be obtained for both primary and
secondary ketones (entries 1−3), although tertiary ketone
afforded diminished yield, presumably due to steric effects
(entry 4). For chiral or prochiral secondary ketones, two
diastereoisomers are produced with preferential formation of
the syn (dl) diastereoisomer (entries 2 and 3). Analogous
outcomes have also been observed in stoichiometric dimer-
izations.2i,n,t The cyclization through intramolecular oxidative
coupling was also successful, and a mixture of cis- and trans-1,2-
dibenzoylcyclohexane was obtained if 1,8-diphenyloctane-1,8-
dione was subjected to the general conditions. As expected, the
trans isomer was formed predominantly (entry 7). In general,
the yields in the catalytic reactions parallel those previously
described in stoichiometric reactions.2g−i
In conclusion, we have developed two copper-catalyzed
methods for oxidative dimerization of nitroalkanes and carbonyl
compounds that employ oxygen as the terminal oxidant. Mild
reaction conditions in the homocoupling of nitroalkanes lead to
good functional group tolerance.
ASSOCIATED CONTENT
* Supporting Information
■
S
(4) One example of dimerizing nitroethane by employing oxygen as a
terminal oxidant has been reported: (a) Clark, J. H.; Cork, D. G.;
Gibbs, H. W. J. Chem. Soc., Perkin Trans. 1 1983, 2253. (b) Ballini, R.;
Bosica, G.; Fiorini, D.; Petrini, M. Tetrahedron Lett. 2002, 43, 5233.
(5) Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed.
1998, 37, 2580.
Text, figures, and tables giving experimental details, data, and
spectra for new compounds. This material is available free of
AUTHOR INFORMATION
Corresponding Author
■
(6) Ono, N. The Nitro Group in Organic Synthesis; Wiley: New York,
2001.
(7) Electrochemical methods: (a) Zelinsky, N. J. J. Russ. Phys. Chem.
Soc 1894, 36, 610. (b) Ulpiani, C.; Gasparini, O. Gazz. Chim. Ital.
1902, 32, 235. (c) Nenitzescu, C. D. Chem. Ber. 1929, 62, 2669.
(8) (a) Matthews, W. S.; Bares, J. E.; Bartmess, J. E.; Bordwell, F. G.;
Cornforth, F. J.; Drucker, G. E.; Margolin, Z.; McCallum, R. J.;
McCollum, G. J.; Vanier, N. R. J. Am. Chem. Soc. 1975, 97, 7106.
(b) Bordwell, F. G.; Vanier, N. R.; Matthews, W. S.; Hendrickson, J.
B.; Skipper, P. L. J. Am. Chem. Soc. 1975, 97, 7160. (c) Bordwell, F. G.;
Bartmess, J. E.; Hautala, J. A. J. Org. Chem. 1978, 43, 3107.
(9) Please see the Supporting Information for optimization data.
(10) An increase of CuCl2 loading increases the dimerization product
yield; however, the effect becomes smaller with higher Cu(II) loading.
Please see the Supporting Information for details.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the Welch Foundation (Grant No. E-1571), the
NIGMS (Grant No. R01GM077635), the Norman Hackerman
Advanced Research Program, and the Camille and Henry
Dreyfus Foundation for supporting this research.
REFERENCES
■
(1) For selected reviews see: (a) Hassan, J.; Sevignon, M.; Gozzi, C.;
Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359. (b) Noble, P., Jr.;
Borgardt, F. G.; Reed, W. L. Chem. Rev. 1964, 64, 19. (c) Csaky, A. G.;
Plumet, J. Chem. Soc. Rev. 2001, 30, 313.
(11) Dimerization of nitrocyclohexane in air led to 52% conversion
to product in 5 h. If the reaction was run under nitrogen, 9%
conversion to product was observed (15 mol % of CuCl2 used). Please
see the Supporting Information for details.
(2) (a) Nagano, T.; Hayashi, T. Org. Lett. 2005, 7, 491. (b) Cahiez,
G.; Chaboche, C.; Mahuteau-Betzer, F.; Ahr, M. Org. Lett. 2005, 7,
1943. (c) Liebeskind, L. S.; Riesinger, S. W. Tetrahedron Lett. 1991, 32,
5681. (d) Black, D. St C.; Choy, A.; Craig, D. C.; Ivory, A. J.; Kumar,
N. J. Chem. Soc., Chem. Commun. 1989, 111. (e) Shechter, H.; Kaplan,
R. B. J. Am. Chem. Soc. 1953, 75, 3980. (f) Pagano, A. H.; Shechter, H.
J. Org. Chem. 1970, 35, 295. (g) Rathke, M. W.; Lindert, A. J. Am.
Chem. Soc. 1971, 93, 4605. (h) Ito, Y.; Konoike, T.; Saegusa, T. J. Am.
Chem. Soc. 1975, 97, 2912. (i) Ito, Y.; Konoike, T.; Harada, T.;
Saegusa, T. J. Am. Chem. Soc. 1977, 99, 1487. (j) Chen, X.; Dobereiner,
G.; Hao, X.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Tetrahedron 2009, 65,
3085. (k) Morin, J. B.; Sello, J. K. Org. Lett. 2010, 12, 3522. (l) Edge,
D. J.; Norman, R. O. C.; Storey, P. M. J. Chem. Soc. B 1970, 1096.
(m) Bowman, W. R.; Jackson, S. W. Tetrahedron 1990, 46, 7313.
C
dx.doi.org/10.1021/om300393m | Organometallics XXXX, XXX, XXX−XXX