The Journal of Organic Chemistry
Page 16 of 18
(4) Deval, J.; Symons, J. A.; Beigelman, L. Inhibition of viral
Boronic Acids. in Synthetic Methods in Drug Discovery (Eds.:
RNA polymerases by nucleoside and nucleotide analogs: thera-
peutic applications against positive-strand RNA viruses beyond
hepatitis C virus. Curr. Opin. Virol. 2014, 9, 1-7.
(5) Fenaux, M.; Mo, H. NS5B polymerase non-nucleoside inhib-
itors. in Hepatitis C (Eds.: Tan, S.-L.; He, Y.), Caister Academic
Press, Norwich UK, 2011, pp. 311-320.
Blakemore, D. C.; Doyle, M. P.; Fobian, Y. M.), Royal Society of
Chemistry, Cambridge, 2016, Vol. 1, Chapter 7, pp 242−273. (f)
Vantourout, J. C.; Miras, H. N.; Isidro-Llobet, A.; Sproules, S.;
Watson, A. J. B. Spectroscopic Studies of the Chan–Lam Amina-
tion: A Mechanism-Inspired Solution to Boronic Ester Reactivity.
J. Am. Chem. Soc. 2017, 139, 4769-4779.
1
2
3
4
5
6
7
8
9
(6) (a) Maynard, A.; Crosby, R. M.; Ellis, B.; Hamatake, R.;
Hong, Z.; Johns, B. A.; Kahler, K. M.; Koble, C.; Leivers, A.; Leivers,
M. R.; Mathis, A.; Peat, A. J.; Pouliot, J. J.; Roberts, C. D.; Samano,
V.; Schmidt, R. M.; Smith, G. K.; Spaltenstein, A.; Stewart, E. L.;
Thommes, P.; Turner, E. M.; Voitenleitner, C.; Walker, J. T.; Waitt,
G.; Weatherhead, J.; Weaver, K.; Williams, S.; Wright, L.; Xiong,
Z. Z.; Haigh, D.; Shotwell, J. B. Discovery of a Potent Boronic Acid
Derived Inhibitor of the HCV RNA-Dependent RNA Polymerase.
J. Med. Chem. 2014, 57, 1902-1913. (b) Bowman, R. K.; Bullock, K.
M.; Copley, R. C. B.; Deschamps, N. M.; McClure, M. S.; Powers, J.
D.; Wolters, A. M.; Wu, Lianming, Xie, S. Conversion of a Benzo-
furan Ester to an Amide through an Enamine Lactone Pathway:
Synthesis of HCV Polymerase Inhibitor GSK852A. J. Org. Chem.
2015, 80, 9610-9619. (c) Song, Z. J.; Tan, L.; Liu, G.; Ye, H.; Dong, J.
Concise Cu(I) Catalyzed Synthesis of Substituted Benzofurans via
a Tandem SNAr/C-O Coupling Process. Org. Process Res. Dev.
2016, 20, 1088-1092.
(7) (a) Yang, W.; Gao, X.; Wang, B. Boronic acid compounds as
potential pharmaceutical agents. Med. Res. Rev. 2003, 23, 346-368.
(b) Ciani, L.; Ristori, S. Boron as a Platform for New Drug Design.
Expert Opin. Drug Discovery 2012, 7, 1017−1027.
(8) (a) P. Y. Chong, J. F. Miller, A. J. Peat, J. B. Shotwell, Benzo-
furan compounds for the treatment of hepatitis c virus infections,
WO2013028371A1, 28 February 2013. (b) Gardner, S. D.; Kim, J.;
Baptise-Brown, S>; Lopez, V.; Hamatake, R.; Gan, J.; Edwards, S.;
Elko-Simms, L.; Dumont, E. F.; Leivers, M.; Hong, Z.; Paff, M. T.
GSK2878175, a pan- genotypic non- nucleoside NS5B polymerase
inhibitor, in healthy and treatment-naïve chronic hepatitis C sub-
jects. J. Viral Hepat. 2018, 25, 19-27.
(13) (a) Boronic Acids: Preparation and Applications in Organic
Synthesis, Medicine and Materials, 2nd ed., Vols. 1 and 2. (Ed.: Hall,
D.) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011; pp
1−133. (b) Cox, P. A.; Leach, A. G.; Campbell, A. D.; Lloyd-Jones, G.
C. Protodeboronation of Heteroaromatic, Vinyl, and Cyclopropyl
Boronic Acids: pH–Rate Profiles, Autocatalysis, and Dispropor-
tionation. J. Am. Chem. Soc. 2016, 138, 9145-9157.
(14) (a) Cho, J. Y., Tse, M. K., Holmes, D., Maleczka, R. E., Jr.
and Smith, M. R., III Remarkably selective iridium catalysts for the
elaboration of aromatic C-H bonds. Science 2002, 295, 305-308.
(b) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.;
Hartwig, J. F. C−H Activation for the Construction of C−B Bonds.
Chem. Rev. 2010, 110, 890-931. (c) Xu, L.; Wang, G.; Zhang, S.;
Wang, H.; Wang, L.; Liu, L.; Jiao, J.; Li, P. Recent advances in cat-
alytic C-H borylation reactions. Tetrahedron 2017, 73, 7123-7157.
(15) (a) Ishiyama, T.; Takagi, J.; Hartwig, J. F.; Miyaura, N. A
Stoichiometric Aromatic C-H Borylation Catalyzed by Irid-
ium(I)/2,2′‐Bipyridine Complexes at Room Temperature. Angew.
Chem., Int. Ed. 2002, 41, 3056-3058. (b) Boller, T. M.; Murphy, J.
M.; Hapke, M.; Ishiyama, T.; Miyaura, N.; Hartwig, J. F. Mecha-
nism of the Mild Functionalization of Arenes by Diboron Rea-
gents Catalyzed by Iridium Complexes. Intermediacy and Chem-
istry of Bipyridine-Ligated Iridium Trisboryl Complexes. J. Am.
Chem. Soc. 2005, 127, 14263-14278.
(16) Preshlock, S. M., Ghaffari, B., Maligres, P. E., Krska, S. W.,
Maleczka, R. E. Smith, M. R., III High-Throughput Optimization
of Ir-Catalyzed C–H Borylation: A Tutorial for Practical Applica-
tions. J. Am. Chem. Soc. 2013, 135, 7572-7582.
(17) While grinding crystalline [Ir(COD)Cl]2 in a mortar and
pestle is feasible for lab-scale and even kiloscale operation (due to
the small amount of catalyst required), other options (such as
milling and sieving the solid to a consistent particle size) would
be needed for large-scale operation.
(18) A preliminary account of this Chan-Lam methodology for
general arylation of sulfonamides has been published recently.
Vantourout, J. C.; Li, L.; Bendito-Moll, E.; Chabbra, S.; Arrington,
K.; Bode, B. E.; Isidro-Llobet, A.; Kowalski, J. A.; Nilson, M. G.;
Wheelhouse, K. M. P.; Woodard, J. L.; Xie, S.; Leitch, D. C.; Wat-
son, A. J. B. Mechanistic Insight Enables Practical, Scalable, Room
Temperature Chan-Lam N-Arylation of N-Aryl Sulfonamides. ACS
Catal. 2018, 8, 9560-9566.
(19) (a) Mudryk, B.; Zheng, B.; Chen, K.; Eastgate, M. Develop-
ment of a Robust Process for the Preparation of High-Quality Di-
cyclopropylamine Hydrochloride D. Org. Process Res. Dev. 2014,
18, 520-527. (b) Osterberg, P. M.; Niemeier, J. K.; Welch, C. J.;
Hawkins, J. M.; Martinelli, J. R.; Johnson, T. E.; Root, T. W.; Stahl,
S. S. Experimental Limiting Oxygen Concentrations for Nine Or-
ganic Solvents at Temperatures and Pressures Relevant to Aerobic
Oxidations in the Pharmaceutical Industry. Org. Process Res. Dev.
2015, 19, 1537−1543.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(9) Hicks, J. D.; Hyde, A. M.; Cuezva, A. M.; Buchwald, S. L. Pd-
Catalyzed N-Arylation of Secondary Acyclic Amides: Catalyst De-
velopment, Scope, and Computational Study. J. Am. Chem. Soc.
2009, 131, 16720–16734.
(10) (a) Wu, Y.-J.; Zhang, Y.; Good, A. C.; Burton, C. R.; Toyn, J.
H.; Albright, C. F.; Macor, J. E.; Thompson, L. A. Synthesis and
SAR of hydroxyethylamine based phenylcarboxyamides as inhibi-
tors of BACE. Bioorg. Med. Chem. Lett. 2009, 19, 2654–2660. (b)
Rosen, B. R.; Ruble, J. C.; Beauchamp, T. J.; Navarro, A. Mild Pd-
Catalyzed N-Arylation of Methanesulfonamide and Related Nu-
cleophiles: Avoiding Potentially Genotoxic Reagents and Byprod-
ucts. Org. Lett. 2011, 13, 2564-2567. (c) Crawford, S. M.; Lavery, C.
B.; Stradiotto, M. BippyPhos: A Single Ligand With Unprece-
dented Scope in the Buchwald–Hartwig Amination of (Het-
ero)aryl Chlorides. Chem. Eur. J. 2013, 19, 16760-16771.
(11) Naito, H.; Hata, T.; Urabe, H. Selective Deprotection of Me-
thanesulfonamides to Amines. Org. Lett. 2010, 12, 1228-1230.
(12) (a) Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M.
P. New N- and O-arylations with phenylboronic acids and cupric
acetate. Tetrahedron Lett. 1998, 39, 2933-2936. (b) Evans, D. A;
Katz, J. L.; West, T. R. Synthesis of diaryl ethers through the cop-
per-promoted arylation of phenols with arylboronic acids. An ex-
pedient synthesis of thyroxine. Tetrahedron Lett. 1998, 39, 2937-
2940. (c) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Win-
ters, M. P.; Chan, D. M. T.; Combs, A. New aryl/heteroaryl C-N
bond cross-coupling reactions via arylboronic acid/cupric acetate
arylation. Tetrahedron Lett. 1998, 39, 2941-2944. (d) Qiao, J.; Lam,
P. Y. S. „Copper-Promoted Carbon-Heteroatom Bond Cross-
Coupling with Boronic Acids and Derivatives. Synthesis 2011,
829−856. (e) Lam, P. Y. S. Chan−Lam Coupling Reaction: Copper-
promoted C−Element Bond Oxidative Coupling Reaction with
(20) While operating below the LOC for the organic solvent(s)
used in an aerobic oxidation is necessary for ensuring a basis of
safety, it is not sufficient to establish said basis of safety. Addi-
tional safety testing at every point of the process and implemen-
tation of the appropriate engineering controls are required for any
large-scale process that involves the risk of combustion.
(21) (a) Ainley, A. D.; Challenger, F. CCLXXX.—Studies of the
boron–carbon linkage. Part I. The oxidation and nitration of phe-
nylboric acid. J. Chem. Soc. 1930, 2171-2180. (b) Thompson, A. L.
S.; Kabalka, G. W.; Akula, M. R.; Huffman, J. W. The Conversion
ACS Paragon Plus Environment