FULL PAPERS
to the solution, and the mixture was stirred for 4 h. The sus-
pension was filtered through Celite, and the solvent was re-
moved under reduced pressure. Analytically pure com-
pounds 7b–e were obtained after elution through a short
path column of alumina using CH2Cl2.
[6] O. Schuster, L. Yang, H. G. Raubenheimer, M. Al-
brecht, Chem. Rev. 2009, 109, 3445–3478.
[7] a) A. R. Chianese, A. Kovacevic, B. M. Zeglis, J. W.
Faller, R. H. Crabtree, Organometallics 2004, 23, 2461–
2468; b) R. Tonner, G. Heydenrych, G. Frenking,
Chem. Asian J. 2007, 2, 1555–1567; c) X. Xu, B. Xu, Y.
Li, S. H. Hong, Organometallics 2010, 29, 6343–6349;
d) T. Nakamura, T. Terashima, K. Ogata, S.-I. Fukuza-
wa, Org. Lett. 2011, 13, 620–623; e) X. Gong, H.
Zhang, X. Li, Tetrahedron Lett. 2011, 52, 5596–5600;
f) S. Saha, T. Ghatak, B. Saha, H. Doucet, J. K. Bera,
Organometallics 2012, 31, 5500–5505; g) M. Hecken-
roth, E. Kluser, A. Neels, M. Albrecht, Angew. Chem.
2007, 119, 6409–6412; Angew. Chem. Int. Ed. 2007, 46,
6293–6296.
General procedure for the Suzuki–Miyaura reaction
To a 7 mL vial equipped with a magnetic stir bar, catalyst 7c
(0.5 mol%, 0.001 mmol), K2CO3 (0.4 mmol), ArB(OH)2
(0.4 mmol), toluene (1.0 mL), and aryl halide (0.2 mmol)
were added under ambient atmosphere. The reaction mix-
ture stirred at 808C, and the progress of the reaction was
monitored by GC. Upon complete consumption of aryl
halide, the mixture was allowed to cool to room tempera-
ture, quenched with water, and extracted with CH2Cl2. The
organic layer was dried over MgSO4, filtered, and concen-
trated. The residue obtained was purified by column chro-
matography with Et2O/EtOAc as the eluent.
[8] a) M. Albrecht, Chem. Commun. 2008, 3601–3610;
b) S.-J. Chen, Y.-D. Lin, Y.-H. Chiang, H. M. Lee, Eur.
J. Inorg. Chem. 2014, 1492–1501; c) M. Heckenroth, A.
Neels, M. G. Garnier, P. Aebi, A. W. Ehlers, M. Al-
brecht, Chem. Eur. J. 2009, 15, 9375–9386.
[9] a) E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P.
Parameswaran, G. Frenking, G. Bertrand, Science 2009,
326, 556–559; b) P. Mathew, A. Neels, M. Albrecht, J.
Am. Chem. Soc. 2008, 130, 13534–13535; c) M. Alcara-
zo, S. J. Roseblade, A. R. Cowley, R. Fernꢅndez, J. M.
Brown, J. M. Lassaletta, J. Am. Chem. Soc. 2005, 127,
3290–3291; d) G. Song, Y. Zhang, X. Li, Organometal-
lics 2008, 27, 1936–1943.
Acknowledgements
This work was supported by a 2-Year Research Grant of
Pusan National University.
[10] a) H. V. Huynh, Y. Han, R. Jothibasu, J. A. Yang, Orga-
nometallics 2009, 28, 5395–5404; b) R. Jothibasu, H. V.
Huynh, Chem. Commun. 2010, 46, 2986–2988; c) H. Si-
varam, R. Jothibasu, H. V. Huynh, Organometallics
2012, 31, 1195–1203; d) J. C. Bernhammer, N. X.
Chong, R. Jothibasu, B. Zhou, H. V. Huynh, Organo-
metallics 2014, 33, 3607–3617; e) Y. Zhou, Q. Liu, W.
Lv, Q. Pang, R. Ben, Y. Qian, J. Zhao, Organometallics
2013, 32, 3753–3759.
[11] a) J. D. Kendall, A. J. Marshall, A. C. Giddens, K. Y.
Tsang, M. Boyd, R. Frederick, C. L. Lill, W.-J. Lee, S.
Kolekar, M. Chao, A. Malik, S. Yu, C. Chaussade,
C. M. Buchanan, G. W. Rewcastle, B. C. Baguley, J. U.
Flanagan, W. A. Denny, P. R. Shepherd, Med. Chem.
Commun. 2014, 5, 41–46; b) B. A. Johns, K. S. Gud-
mundsson, S. H. Allen, Bioorg. Med. Chem. Lett. 2007,
17, 2858–2862; c) J. Tang, B. Wang, T. Wu, J. Wan, Z.
Tu, M. Njire, B. Wan, S. G. Franzblauc, T. Zhang, X.
Lu, K. Ding, ACS Med. Chem. Lett. 2015, 6, 814–818.
[12] K. H. Park, Blue luminescent compounds, WO
2013163019 A1, 2013.
[13] a) J. J. Mousseau, A. Fortier, A. B. Charette, Org. Lett.
2010, 12, 516–519; b) J. J. Mousseau, J. A. Bull, C. L.
Ladd, A. Fortier, D. S. Roman, A. B. Charette, J. Org.
Chem. 2011, 76, 8243–8261; c) Y. Hoashi, T. Takai, E.
Kotani, T. Koike, Tetrahedron Lett. 2013, 54, 2199–
2202; d) D. C. Mohan, C. Ravi, S. N. Rao, S. Adimur-
thy, Org. Biomol. Chem. 2015, 13, 3556–3560; e) J. D.
Kendall, Current Organic Chemistry 2011, 15, 2481–
2518.
[14] a) P. A. Bethel, A. D. Campbell, F. W. Goldberg, P. D.
Kemmitt, G. M. Lamont, A. Suleman, Tetrahedron
2012, 68, 5434–5444; b) S. Lçber, T. Aboul-Fadl, H.
Hꢄbner, P. Gmeiner, Bioorg. Med. Chem. Lett. 2002,
References
[1] a) W. A. Herrmann, Angew. Chem. 2002, 114, 1342–
1363; Angew. Chem. Int. Ed. 2002, 41, 1290–1309;
b) E. A. B. Kantchev, C. J. OꢂBrien, M. G. Organ,
Angew. Chem. 2007, 119, 2824–2870; Angew. Chem.
Int. Ed. 2007, 46, 2768–2813; c) J. D. Egbert, C. S. J.
Cazin, S. P. Nolan, Catal. Sci. Technol. 2013, 3, 912–926;
d) K. Riener, S. Haslinger, A. Raba, M. P. Hçgerl, M.
Cokoja, W. A. Herrmann, F. E. Kꢄhn, Chem. Rev. 2014,
114, 5215–5272; e) S. Dıez-Gonzalez, N. Marion, S. P.
Nolan, Chem. Rev. 2009, 109, 3612–3676; f) L.-A.
Schaper, S. J. Hock, W. A. Herrmann, F. E. Kꢄhn,
Angew. Chem. 2013, 125, 284–304; Angew. Chem. Int.
Ed. 2013, 52, 270–289; g) J. C. Garrison, W. J. Youngs,
Chem. Rev. 2005, 105, 3978–4008.
[2] a) H. Jacobsen, A. Correa, A. Poater, C. Costabile, L.
Cavallo, Coord. Chem. Rev. 2009, 253, 687–703; b) S.
Diez-Gonzalez, S. P. Nolan, Coord. Chem. Rev. 2007,
251, 874–883; c) L. Cavallo, A. Correa, C. Costabile, H.
Jacobsen, J. Organomet. Chem. 2005, 690, 5407–5413.
[3] C. M. Crudden, D. P. Allen, Coord. Chem. Rev. 2004,
248, 2247–2273.
[4] a) R. H. Crabtree, Coord. Chem. Rev. 2013, 257, 755–
766; b) A. Krꢄger, M. Albrecht, Aust. J. Chem. 2011,
64, 1113–1117.
[5] a) S. Grꢄndemann, A. Kovacevic, M. Albrecht, J. W.
Faller, R. H. Crabtree, Chem. Commun. 2001, 2274–
2275; b) S. Grꢄndemann, A. Kovacevic, M. Albrecht,
J. W. Faller, R. H. Crabtree, J. Am. Chem. Soc. 2002,
124, 10473–10481; c) L. N. Appelhans, D. Zuccaccia, A.
Kovacevic, A. R. Chianese, J. R. Miecznikowski, A.
Macchioni, E. Clot, O. Eisenstein, R. H. Crabtree, J.
Am. Chem. Soc. 2005, 127, 16299–16311.
Adv. Synth. Catal. 0000, 000, 0 – 0
9
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!