unique capability of forming mesophase.5 To date a
number of liquid crystalline shape-persistent compounds
havebeengeneratedsuchasphenylacetylene macrocycles,6
dendrimers,7 and V-shaped3 molecules containing five-
membered heterocycles.
strong aggregation and self-assembly.9f,10a It is reasoned
that with flat stiff cores defined by the constitutional
backbones and flexible peripheral side chains appropri-
ately positioned, it would be possible for these oligoamide
molecules to form well-organized mesophases. However,
the mesomorphism for these interesting shape-persistent
compounds has remained unknown since they were first
described 10 years ago.9a
Herein we report on our findings of diverse mesognic
phases of crescent oligoamides 1À3 (Scheme 1) and tuning
of their LC mesophases via structural variation by extend-
ing the crescent molecular backbones and adjusting per-
ipheral side chains. These compounds were shown to form
thermotropic lamellar columnar (LCol for 1a), rectangular
columnar (Colr for 2c, 2d and 3a), and discotic nematic
(ND for 3b) mesophases.
Aromatic oligoamides with backbones rigidified by in-
tramolecular hydrogen bonds are attracting intense re-
search interests in recent years.8 Among them, crescent
aromatic oligoamides containing three-center hydrogen
bonds reported by Gong et al.9 represent an interesting
class of shape-persistent molecules due to their character-
istic features in folded conformations9 and internal cavities
for ion-complexation.9g In particular, short oligomers
consisting of less than six benzene residues take a flat,
crescent conformation.9a,c,g These molecules, along with
their cyclic analogues as reported recently by us and the
collaborators,10 have large aromatic surfaces favorable for
πÀπ stacking and thus demonstrated a high propensity for
Scheme 1. Molecular Structures of Aromatic Oligoamides 1À3
(5) (a) Zhao, D. H.; Moore, J. S. Chem. Commun. 2003, 807.
€
(b) Hoger, S. Chem.;Eur. J. 2004, 10, 1320. (c) Moore, J. S.; Zhang,
€
J. S. Angew. Chem., Int. Ed. 1992, 31, 922. (d) Hoger, S.; Meckenstock,
A. D. Angew. Chem., Int. Ed. 1995, 34, 2713.
(6) (a) Zhang, J. S.; Moore, J. S. J. Am. Chem. Soc. 1994, 116, 2655.
€
(b) Hoger, S.; Enkelmann, V.; Bonrad, K.; Tschierske, C. Angew. Chem.,
Int. Ed. 2000, 39, 2267. (c) Seo, S. H.; Jones, T. V.; Seyler, H.; Peters,
J. O.; Kim, T. H.; Chang, J. Y.; Tew, G. N. J. Am. Chem. Soc. 2006, 128,
€
9264. (d) Hoger, S.; Cheng, X. H.; Ramminger, A. D.; Enkelmann, V.;
Rapp, A.; Mondeshki, M.; Schnell, I. Angew. Chem., Int. Ed. 2005, 44,
2801. (e) Chen, S.; Yan, Q.; Li, T.; Zhao, D. Org. Lett. 2010, 12, 4784.
(7) Donnio, B.; Buathong, S.; Bury, I.; Guillon, D. Chem. Soc. Rev.
2007, 36, 1495.
(8) For selected examples, see: (a) Cuccia, L.; Huc, I. Foldamers Based
on Local Conformational Preferences. In Foldamers: Structure, Properties
and Applications; Hecht, S., Huc, I., Eds.; Wiley-VCH: Weinheim, 2007; pp
3À33. (b) Li, Z. T.; Hou, J. L.; Li, C. Acc. Chem. Res. 2008, 41, 1343.
(c)Ren, C.;Maurizot, V.;Zhao,H.;Shen, J.;Zhou, F.;Ong, W. Q.;Du, Z.;
Zhang, K.; Su, H.; Zeng, H. J. Am. Chem. Soc. 2011, 133, 13930.
(d) Guichard, G.; Huc, I. Chem. Commun. 2011, 47, 5933. (e) van Houtem,
M. H.; Martin-Rapun, R.; Vekemans, J. A.; Meijer, E. W. Chem.;Eur. J.
2010, 16, 2258. (f) Yan, Y.; Qin, B.; Ren, C. L.; Chen, X. Y.; Yip, Y. K.; Ye,
R. J.; Zhang, D. W.; Su, H. B.; Zeng, H. Q. J. Am. Chem. Soc. 2010, 132,
5869. (g) Qin, B.; Ren, C. L.; Ye, R. J.; Sun, C.; Chiad, K.; Chen, X. Y.; Li,
Z.; Xue, F.; Su, H. B.; Chass, G. A.; Zeng, H. Q. J. Am. Chem. Soc. 2010,
132, 9564. (h) Ren, C. L.; Zhou, F.; Qin, B.; Ye, R. J.; Shen, S.; Su, H. B.;
Zeng, H. Q. Angew. Chem., Int. Ed. 2011, 50, 10612. (i) Cai, W.; Wang,
G. T.; Xu, Y. X.; Jiang, X. K.; Li, Z. T. J. Am. Chem. Soc. 2008, 130, 6936.
(j) Cai, W.; Wang, G. T.; Du, P.; Wang, R. X.; Jiang, X. K.; Li, Z. T. J. Am.
Chem. Soc. 2008, 130, 13450. (k) You, L. Y.; Wang, G. T.; Jiang, X. K.; Li,
Z. T. Tetrahedron 2009, 65, 9494. (l) Du, Z. Y.; Ren, C. L.; Ye, R. J.; Shen,
J.; Lu, Y. J.; Wang, J.; Zeng, H. Q. Chem. Commun. 2011, 47, 12488.
(m) Ong, W. Q.; Zhao, H. Q.; Du, Z. Y.; Yeh, J. Z. Y.; Ren, C. L.; Tan,
L. Z. W.; Zhang, K.; Zeng, H. Q. Chem. Commun. 2011, 47, 6416. (n) Gan,
The key compounds for our investigation are oligoa-
mides 1À3 with 4À6 long alkyl or triethylene glycol (TEG)
chains attached to the backbones. They were synthesized
according to the similar reported procedures.9 All compounds
were characterized with NMR and mass spectroscopy.11
Thermogravimetric analysis (TGA) of compounds 1À3
revealed no mass loss up to 270 °C, well above the
isotropization temperature,11 indicating thermal stability
of the oligoamides. However, whether the intramolecular
three-center hydrogen bonds are strong enough to endure
the high temperature condition at which they were exam-
ined for DSC or high temperature XRD experiments is still
not clear. Thus, 2b was chosen as a representative example
for variable temperature FTIR (VT FTIR) examination in
solid state. The NH stretching frequency at 3347 cmÀ1 was
found to experience almost no change upon cooling from
190 to 40 °C, and no new band pertinent to the NH amide
was observed.11 Since the change of hydrogen bonding is
directly reflected in the change of stretching frequencies of
amide NH groups,9b these data showed that intramolecular
ꢀ
Q.; Ferrand, Y.; Bao, C.; Kauffmann, B.; Grelard, A.; Jiang, H.; Huc, I.
Science 2011, 331, 1172.
(9) (a) Zhu, J.; Parra, R. D.; Zeng, H. Q.; Skrzypczak-Jankun, E.;
Zeng, X. C.; Gong, B. J. Am. Chem. Soc. 2000, 122, 4219. (b) Parra,
R. D.; Zeng, H. Q.; Zhu, J.; Zheng, C.; Zeng, X. C.; Gong, B. Chem.;
Eur. J. 2001, 7, 4352. (c) Gong, B.; Zeng, H.; Zhu, J.; Yuan, L.; Han, Y.;
Cheng, S.; Furukawa, M.; Parra, R. D.; Kovalevsky, A. Y.; Mills, J. L.;
Skrzypczak-Jankun, E.; Martinovic, S.; Smith, R. D.; Zheng, C.;
Szyperski, T.; Zeng, X. C. Proc. Natl. Acad. Sci. U. S. A. 2002, 99,
11583. (d) Yuan, L.; Zeng, H.; Yamato, K.; Sanford, A. R.; Feng, W.;
Atreya, H. S.; Sukumaran, D. K.; Szyperski, T.; Gong, B. J. Am. Chem.
Soc. 2004, 126, 16528. (e) Gong, B. Acc. Chem. Res. 2008, 41, 1376.
(f) Zhang, Y. F.; Yamato, K.; Zhong, K.; Zhu, J.; Deng, J. G.; Gong, B.
Org. Lett. 2008, 10, 4339. (g) Yamato, K.; Yuan, L. H.; Feng, W.; Helsel,
A. J.; Sanford, A. R.; Zhu, J.; Deng, J. G.; Zeng, X. C.; Gong, B. Org.
Biomol. Chem. 2009, 7, 3643.
(10) (a) Yang, Y.; Feng, W.; Hu, J.; Zou, S.; Gao, R.; Yamato, K.;
Kline, M.; Cai, Z.; Gao, Y.; Wang, Y.; Li, Y.; Yuan, L.; Zeng, X. C.;
Gong, B. J. Am. Chem. Soc. 2011, 133, 18590. (b) Feng, W.; Yamato, K.;
Yang, L.; Ferguson, J. S.; Zhong, L.; Zou, S.; Yuan, L.; Zeng, X. C.;
Gong, B. J. Am. Chem. Soc. 2009, 131, 2629.
(11) See the Supporting Information for details.
Org. Lett., Vol. 14, No. 14, 2012
3585