1034
Y. Liu et al.
LETTER
Similar to our previous hypothesis,12 we propose that both
the aldol donor (ketone) and the receptor (isatin) could be
activated simultaneously in this reaction system to form
transition states TS1 and TS2 (Scheme 2). It is obvious
that TS1 is sterically more stable than TS2, the size of the
cyclic six-membered enamine ring was crucial for this ste-
ric restriction. Therefore, the R,R isomer is formed as the
main product.
(n) Durbin, M. J.; Willis, M. C. Org. Lett. 2008, 10, 1413.
(o) Kumar, C. N. S. S. P.; Devi, C. L.; Rao, V. J.;
Palaniappan, S. Synlett 2008, 2023. (p) Jia, Y.-X.; Hillgren,
J. M.; Watson, E. L.; Marsden, S. P.; Kundig, E. P. Chem.
Commun. 2008, 34, 4040. (q) Trost, B. M.; O’Boyle, B. M.
Org. Lett. 2008, 10, 1369. (r) Lai, H.; Huang, Z.; Wu, Q.;
Qin, Y. J. Org. Chem. 2009, 74, 283. (s) Jia, Y.-X.; Kundig,
E. P. Angew. Chem. Int. Ed. 2009, 48, 1636. (t) Castaldi, M.
P.; Troast, D. M.; Porco, J. A. Org. Lett. 2009, 11, 3362.
(u) Tsuchikama, K.; Hashimoto, Y.; Endo, K.; Shibata, T.
Adv. Synth. Catal. 2009, 351, 2850. (v) Beaumont, S.; Pons,
V.; Retailleau, P.; Dodd, R. H.; Dauban, P. Angew. Chem.
Int. Ed. 2010, 49, 1634. (w) An, G.; Zhou, W.; Zhang, G.;
Sun, H.; Han, J.; Pan, Y. Org. Lett. 2010, 12, 4482.
(x) Urgaonkar, S.; Cortese, J. F.; Barker, R. H.; Cromwell,
M.; Serrano, A. E.; Wirth, D. F.; Clardy, J.; Mazitschek, R.
Org. Lett. 2010, 12, 3998. (y) Kothandaraman, P.; Rao, W.;
Foo, S. J.; Chan, P. W. H. Angew. Chem. Int. Ed. 2010, 49,
4619. (z) Zheng, K.; Yin, C.; Liu, X.; Lin, L.; Feng, X.
Angew. Chem. Int. Ed. 2011, 50, 2573.
In conclusion, we have developed an efficient asymmetric
aldol reaction of cycloketones and various isatin deriva-
tives using a simple and commercially available chiral
1,2-diaminocyclohexane as the catalyst and hexanedioic
acid as the co-catalyst. The corresponding 3-substituted-
3-hydroxyindolin-2-ones have R,R configuration and
were obtained in good to excellent yields (70–90%), dia-
stereoselectivity (up to 99:1 anti/syn) and enantioselectiv-
ity (up to 99% ee). A possible mechanism of the reaction
was proposed to proceed via the more stable TS1 interme-
diate leading to the anti product.
(3) (a) Corrêa, R. J.; Garden, S. J.; Angelici, G.; Tomasini, C.
Eur. J. Org. Chem. 2008, 736. (b) Angelici, G.; Corrêa, R. J.;
Garden, S. J.; Tomasini, C. Tetrahedron Lett. 2009, 50, 814.
(4) (a) Nakamura, S.; Hara, N.; Nakashima, H.; Kubo, K.;
Shibata, N.; Toru, T. Chem. Eur. J. 2008, 14, 8079. (b) Hara,
N.; Nakamura, S.; Shibata, N.; Toru, T. Adv. Synth. Catal.
2010, 352, 1621.
Acknowledgment
We are grateful for the financial support from the National Natural
Science Foundation of China (No. 20972005 and No. 20802004).
(5) Chen, J. R.; Liu, X. P.; Zhu, X. Y.; Li, L.; Qiao, Y. F.; Zhang,
J. M.; Xiao, W. J. Tetrahedron 2007, 63, 10437.
(6) Malkov, A. V.; Kabeshov, M. A.; Bella, M.; Kysilka, O.;
Malyshev, D. A.; Pluháčková, K.; Kočovský, P. Org. Lett.
2007, 9, 5473.
(7) Guo, Q.; Bhanushali, M.; Zhao, C. G. Angew. Chem. Int. Ed.
2010, 49, 9460.
References and Notes
(1) (a) Peddibhotla, S. Curr. Bioact. Compd. 2009, 5, 20.
(b) Galliford, C. V.; Scheidt, K. A. Angew. Chem. Int. Ed.
2007, 46, 8748; Angew. Chem. 2007, 119, 8902. (c) Marti,
C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209.
(d) Kamano, Y.; Zhang, H.-P.; Ichihara, Y.; Kizu, H.;
Komiyama, K.; Pettit, G. R. Tetrahedron Lett. 1995, 36,
2783. (e) Zhang, H.-P.; Kamano, Y.; Ichihara, Y.; Kizu, H.;
Komiyama, K.; Itokawa, H.; Pettit, G. R. Tetrahedron 1995,
51, 5523. (f) Tang, Y.-Q.; Sattler, I.; Thiericke, R.; Grabley,
S. Eur. J. Org. Chem. 2001, 66, 261. (g) Hayashi, M.; Rho,
M.-C.; Enomoto, A.; Fukami, A.; Kim, Y.-P.; Kikuchi, Y.;
Sunazuka, T.; Hirose, T.; Komiyama, K.; Ōmura, S. Proc.
Natl. Acad. Sci. U.S.A. 2002, 99, 14728. (h) Kitajima, M.;
Mori, I.; Arai, K.; Kogure, N.; Takayama, H. Tetrahedron
Lett. 2006, 47, 3199.
(8) Ricci, A.; Bernardi, L.; Gioia, C.; Vierucci, S.; Robitzer, M.;
Quignard, F. Chem. Commun. 2010, 46, 6288.
(9) (a) Raj, M.; Veerasamy, N.; Singh, V. Tetrahedron Lett.
2010, 51, 2157. (b) Popp, F. D.; Donigan, B. E. J. Pharm.
Sci. 1979, 68, 519. (c) Pajouhesh, H.; Parson, R.; Popp, F. D.
J. Pharm. Sci. 1983, 72, 318. (d) Joshi, K. C.; Dandia, A.;
Sanan, S. J. Fluorine Chem. 1989, 44, 59.
(10) Wang, J. F.; Qi, C.; Ge, Z. M.; Cheng, T. M.; Li, R. T. Chem.
Commun. 2010, 46, 2124.
(11) Wang, J. F.; Wang, X.; Ge, Z. M.; Cheng, T. M.; Li, R. T.
Chem. Commun. 2010, 46, 1751.
(12) Liu, Y.; Wang, J. F.; Sun, Q.; Li, R. T. Tetrahedron Lett.
2011, 52, 3584.
(2) (a) Kamenecka, T. M.; Danishefsky, S. J. Chem. Eur. J.
2001, 7, 41. (b) Nicolaou, K. C.; Rao, P. B.; Hao, J.; Reddy,
M. V.; Rassias, G.; Huang, X.; Chen, D. Y.-K.; Snyder, S. A.
Angew. Chem. Int. Ed. 2003, 42, 1753. (c) Liao, Y.-J.; Wu,
Y.-L.; Chuang, C.-P. Tetrahedron 2003, 59, 3511.
(13) Typical Procedure To the mixed solvent (2 mL, MeOH–
H2O = 1:1) was added the corresponding isatin (0.2 mmol),
cyclohexanone (0.6 mmol), and catalyst 13 (0.04 mmol)
with equal amount of hexanedioic acid (0.04 mmol). The
mixture was stirred at r.t. for 14 h, then quenched with
additional H2O. The organic matter was extracted with
EtOAc, dried over Na2SO4, and the filtrate was concentrated
to get the crude product, which was further purified by a
silica gel chromatography.
(d) Barroso, S.; Blay, G.; Cardona, L.; Fernandez, I.; Garcia,
B.; Pedro, J. R. J. Org. Chem. 2004, 69, 6821. (e) Cleghorn,
L. A. T.; Cooper, I. R.; Fishwick, C. W. G.; Grigg, R.;
MacLachlan, W. S.; Rasparini, M.; Sridharan, V.
J. Organomet. Chem. 2003, 687, 483. (f) Schwaebisch, D.;
Tchabanenko, K.; Adlington, R. M.; Cowley, A. M.;
Baldwin, J. E. Chem. Commun. 2004, 22, 2552. (g) Luo, S.;
Mi, X.; Xu, H.; Wang, P. G.; Cheng, J.-P. J. Org. Chem.
2004, 69, 8413. (h) Hamashima, Y.; Suzuki, T.; Takano, H.;
Shimura, Y.; Sodeoka, M. J. Am. Chem. Soc. 2005, 127,
10164. (i) Toullec, P. Y.; Jagt, R. B. C.; De Vries, J. G.;
Feringa, B. L.; Minnaard, A. J. Org. Lett. 2006, 8, 2715.
(j) Ishimaru, T.; Shibata, N.; Nagai, J.; Nakamura, S.; Toru,
T.; Kanemasa, S. J. Am. Chem. Soc. 2006, 128, 16488.
(k) May, J. P.; Patrick, B. O.; Perrin, D. M. Synlett 2006,
3403. (l) Yadav, J. S.; Reddy, B. V. S.; Reddy, C. S.;
Krishna, A. D. Tetrahedron Lett. 2007, 48, 2029. (m) Sano,
D.; Nagata, K.; Itoh, T. Org. Lett. 2008, 10, 1593.
3-Hydroxy-3-(2-oxocyclohexyl)indolin-2-one (16a)
Yield 90%; mp 159 °C; anti/syn = 20:1; 99% ee. 1H NMR
(400 MHz, DMSO-d6): δ = 10.16 (s, 1 H), 7.13–7.21 (m, 2
H), 6.75–6.87 (m, 2 H), 5.77 (s, 1 H), 3.07 (dd, J = 12.0, 4.0
Hz, 1 H), 2.53–2.58 (m, 1 H), 2.36–2.53 (m, 1 H), 2.27–2.34
(m, 1 H), 1.58–2.08 (m, 5 H), 1.43–1.50 (m, 1 H). 13C NMR
(100 MHz, DMSO-d6): δ = 209.8, 179.4, 144.1, 131.5,
129.3, 125.5, 121.5, 110.1, 74.6, 58.1, 42.1, 27.4, 27.3, 25.1.
HRMS: m/z calcd for C14H16NO3 [M + H+]: 246.11247;
found: 246.11184. The enantiomeric ratio was determined
by chiral HPLC with AD-H column (hexane–2-PrOH =
80:20, 1 mL/min).
Synlett 2012, 23, 1031–1034
© Georg Thieme Verlag Stuttgart · New York