M. Abbasi / Tetrahedron Letters 53 (2012) 3683–3685
3685
In Comprehensive Natural Products Chemistry; Barton, D., Nakanishi, K., Eds.;
Pergamon Press: Oxford, 1999; Vol. 1, p 825.
2. Koval, I. V. Russ. J. Org. Chem. 2007, 43, 319–346. and references cited therein.
3. Sheldon, R. A. Chirotechnologies, Industrial Synthesis of Optically Active
Compounds; Dekker: New York, 1993.
R1
H
R1
O
O
OH
O
O
SiO2
+
SiO2/Et3N
O
R1
SH
R2
S
S
R2
R2
4. (a) Yadav, J. S.; Reddy, B. V. S.; Baishya, G. J. Org. Chem. 2003, 68, 7098–7100; (b)
Ranu, B. C.; Dey, S. S.; Hajra, A. Tetrahedron 2003, 59, 2417–2421; (c) Ranu, B. C.;
Dey, S. S. Tetrahedron 2004, 60, 4183–4188; (d) Sharma, Y. O.; Degani, M. S. J.
Mol. Catal. A: Chem. 2007, 277, 215–220; (e) Meciarova, M.; Toma, S.; Kotrusz, P.
Org. Biomol. Chem. 2006, 4, 1420–1424; (f) Krishnaveni, N. S.; Surendra, K.; Rao,
K. R. Chem. Commun. 2005, 669–671; (g) Khatik, G. L.; Kumar, R.; Chakraborti, A.
K. Org. Lett. 2006, 8, 2433–2436; (h) Firouzabadi, H.; Iranpoor, N.; Jafari, A. A.
Adv. Synth. Catal. 2005, 347, 655–661; (i) Chaudhuri, M. K.; Hussain, S. J. Mol.
Catal. A: Chem. 2007, 269, 214–217; (j) Yadav, J. S.; Swamy, T.; Reddy, B. V. S.;
Rao, D. K. J. Mol. Catal. A: Chem. 2007, 274, 116–119; (k) Firouzabadi, H.;
Iranpoor, N.; Jafarpour, M.; Ghaderi, A. J. Mol. Catal. A: Chem. 2006, 249, 98–102;
(l) Movassagh, B.; Shaygan, P. Arkivoc 2006, xii, 130–137; (m) Pore, D. M.;
Soudagar, M. S.; Desai, U. V.; Thopatea, T. S.; Wadagaonkar, P. P. Tetrahedron Lett.
2006, 47, 9325–9328; (n) Chu, C.-M.; Gao, S.; Sastry, M. N. V.; Yao, C.-F.
Tetrahedron Lett. 2005, 46, 4971–4974; (o) Gao, S.; Tzeng, T.; Sastry, M. N. V.;
Chu, C.-M.; Liu, J.-T.; Lin, C.; Yao, C.-F. Tetrahedron Lett. 2006, 47, 1889–1893; (p)
Garg, S. K.; Kumar, R.; Chakraborti, A. K. Tetrahedron Lett. 2005, 46, 1721–1724;
(q) Chu, C.-M.; Gao, S.; Sastry, M. N. V.; Kuo, C.-W.; Lu, C.; Liu, J.-T.; Yao, C.-F.
Tetrahedron 2007, 63, 1863–1871; (r) Sharma, G.; Kumar, R.; Chakraborti, A. K. J.
Mol. Catal. A: Chem. 2007, 263, 143–148; (s) Sharma, G.; Kumar, R.; Chakraborti,
A. K. Tetrahedron Lett. 2008, 49, 4272–4275; (t) Zhang, H.; Zhang, Y.; Liu, L.; Hu,
H.; Wang, Y. Synthesis 2005, 2129–2136.
5. (a) Firouzabadi, H.; Iranpoor, N.; Abbasi, M. Adv. Synth. Catal. 2009, 351, 755–
766; (b) Firouzabadi, H.; Iranpoor, N.; Abbasi, M. Tetrahedron 2009, 65, 5293–
5301.
6. (a) Jin, Y.; Ghaffari, M. A.; Schwartz, M. A. Tetrahedron Lett. 2002, 43, 7319–7321;
(b) Lesuisse, D.; Gourvest, J. F.; Hartmann, C.; Tric, B.; Benslimane, O.; Philibert,
D.; Vevert, J. P. J. Med. Chem. 1992, 35, 1588–1597; (c) Beanla, M.; Kohn, H. J. Org.
Chem. 1983, 48, 5033–5041; (d) Srinivas, B.; Sridhar, R.; Surendra, K.;
Krishnaveni, N. S.; Kumar, V. P.; Nageswar, Y. V. D.; Rao, K. R. Synth. Commun.
2006, 36, 3455–3459.
SiO2/Et3N
O
O
R1
HS
O
R1
O
EWG
S
SiO2/Et3N
R2
EWG
R2
Scheme 1. A possible pathway for the one-pot generation of thia-Michael products
using thio acids, epoxides, and Michael acceptors.
b-acyloxy mercaptans using thio acids, epoxides, and electron-
deficient alkenes under solvent-free conditions has been devel-
oped. In this method, the b-acyloxy mercaptans are generated
in situ utilizing thio acid and epoxide substrates and a silica gel/
Et3N combined catalyst. This method is important because it
provides a short synthetic route to achieve the corresponding
thia-Michael adducts of non-commercial mercaptans using readily
available substrates.
Acknowledgement
7. Abbasi, M. Tetrahedron Lett. 2012, 53, 2608–2610.
8. General procedure: silica gel 60 (1 g) was added to a stirred mixture of a thio acid
(2.1 mmol) and an epoxide (2.1 mmol) at room temperature under solvent-free
conditions. After consumption of the starting materials (less than 5 min), an
electron-deficient alkene (2 mmol) and Et3N (0.1 mmol) were added to the
mixture and stirring was continued at 50–60 °C. The reaction progress was
monitored by GC or TLC. After complete consumption of the alkene (3 h for
reactions using thioacetic acid and 7 h for reactions using thiobenzoic acid), the
mixture was extracted with EtOAc, and then concentrated. The crude product was
purified by silica gel column chromatography (EtOAc:n-hexane = 1:15 v/v) and
the corresponding thia-Michael product was isolated in 82–94% yield. Physical,
spectral, and analytical data for butyl 3-{[2-(acetyloxy)-3-phenoxypropyl]sulfanyl}
propanoate (1): Colorless oil; 1H NMR (250 MHz, CDCl3) d: 7.21–7.13 (m, 2H),
6.88–6.71 (m, 3H), 5.22–5.12 (m, 1H), 4.11–4.50 (m, 2H), 3.99 (t, J = 6.6 Hz, 2H),
2.88–2.69 (m, 4H), 2.54–2.48 (m, 2H), 1.98 (s, 3H), 1.56–1.45 (m, 2H), 1.34–1.17
(m, 2H), 0.83 (t, J = 7.3 Hz, 3H); 13C NMR (62.9 MHz, CDCl3) d: 171.7, 170.3, 158.4,
129.5, 121.3, 114.6, 71.4, 67.2, 64.5, 34.7, 32.2, 30.6, 27.6, 21.0, 19.1, 13.7; IR
We gratefully acknowledge financial support of this study by
the Persian Gulf University Research Council.
Supplementary data
Supplementary data (1H and 13C NMR spectra of all products)
associated with this article can be found, in the online version, at
References and notes
1. (a) Frausto da Silva, J. R.; Williams, R. J. P. The Biological Chemistry of the Elements;
Oxford University Press: New York, 2001; (b)The Chemistry of Sulfur-containing
Functional Groups; Patai, S., Rappoport, Z., Eds.; Wiley-Interscience: New York,
1993; (c) Oae, S. Organic Sulfur Chemistry; CRC: Boca Raton, 1991; (d) Parry, R. J.
(neat):
(C18H26O5S): C, 60.99; H, 7.39; S, 9.05. Found: C, 60.76; H, 7.51; S, 8.90.
m
(cmÀ1) = 1735 (C@O ester), 1597 (C@C aromatic); Anal. Calcd for