3588
A. H. Sato et al. / Tetrahedron Letters 53 (2012) 3585–3589
Figure 1. Compounds 8–22.
4. Galli, C.; Rappoport, Z. Acc. Chem. Res. 2003, 36, 580–587.
hydroiodination. In addition, unfortunately, several attempts to
transform alkyl-substituted terminal and internal alkynes did not
5. (a) Morrill, C.; Funk, T. W.; Grubbs, R. H. Tetrahederon Lett. 2004, 45, 7733–
7736; (b) Chen, Z.; Jiang, H.; Qi, C. Chem. Commun. 2010, 46, 8049–8051.
6. For representative transformations where vinyl iodides are used in synthesis of
complex molecules, see: Liu, X.; Henderson, J. A.; Sasaki, T.; Kishi, Y. J. Am.
Chem. Soc. 2009, 131, 16678. and references cited therein..
7. (a) Stone, H.; Schecher, H. Org. Syn. Coll. 1963, N, 543; (b) Stewart, L. J.; Gray, D.;
Pagni, R. N.; Kabalka, G. W. Tetrahedron Lett. 1987, 28, 4497; (c) Reddy, Ch. K.;
Periasamy, M. Tetrahedron Lett. 1919, 1990, 31.
8. Kropp, P. J.; Craword, S. D. J. Org. Chem. 1994, 59, 3102–3112.
9. (a) Hudrlik, P. F.; Kulkarni, A. K.; Jain, S.; Hudrlik, A. M. Tetrahedron 1983, 39,
877–882; (b) Griesbaum, K.; El-Abed, M. Chem. Ber. 1973, 106, 2001–2008; (c)
Fahey, R. C.; Lee, D.-J. J. Am. Chem. Soc. 1968, 90, 2124–2131; (d) Stacey, F. W.;
Harris, J. F., Jr. Org. React. (N.Y.) 1963, 13, 150–376; (e) Hennion, G. F.; Welsh, C.
E. J. Am. Chem. Soc. 1940, 62, 1367–1368.
give the corresponding a
-vinyl iodides.30
In summary, commercially available TMSI was found to convert
trimethylsilyl ethynylarenes into (1-iodovinyl)arenes in one-step.
Under the optimized reaction conditions, the reaction occurred
quickly under routine conditions, and was readily amenable to
scale up. Deuteration experiments suggest that the reaction path-
way of a-vinyl iodation is different between 1 and 2. This approach
afforded a wide variety of new and potentially useful (1-iodovi-
nyl)arenes. The synthetic utility of (1-iodovinyl)arenes is clear
and we hope that our straightforward and versatile methodology
finds widespread use in organic synthesis. Application and com-
plete mechanistic elucidation are ongoing for further development
of this reaction and will be reported in due course.
10. For the synthetic methods of a-vinyl iodides except the methods from alkynes,
see: (a) Byrd, L. R.; Caserio, M. C. J. Org. Chem. 1972, 37, 3881; (b) Lee, K.;
Wiemer, D. F. Tetrahedron Lett. 1993, 34, 2433; (c) Furrow, M. E.; Myers, A. G. J.
Am. Chem. Soc. 2004, 126, 5436; (d) Krafft, M. E.; Cran, J. W. Synlett 2005, 1263;
(e) Spaggiari, A.; Vaccari, D.; Davoli, P.; Torre, G.; Prati, F. J. Org. Chem. 2007, 72,
2216–2219.
11. (a) Gao, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10961–10963; (b) Miller,
R. B.; McGarvey, G. J. Org. Chem. 1979, 44, 4623.
Acknowledgment
12. Kamiya, N.; Chikami, Y.; Ishii, Y. Synlett 1990, 675–676.
We are very grateful to Professor Michael P. Schramm at the
California State University Long Beach for helpful discussion.
13. (a) Gao, Y.; Harada, K.; Hata, T.; Urabe, H.; Sato, F. J. Org. Chem. 1995, 60, 290–
291; (b) Campos, P. J.; García, B.; Rodríguez, M. A. Tetrahedron Lett. 2002, 43,
6111–6112; (c) Shimizu, M.; Toyoda, T.; Baba, T. Synlett 2005, 2516–2518; (d)
Moleele, S. S.; Michael, J. P.; de Koning, C. B. Tetrahedron 2006, 62, 2831–2844.
14. Kawaguchi, S.; Ogawa, A. Org. Lett. 2010, 12, 1893–1895.
Supplementary data
15. (a) Mullard, A. Nature Rev. Drug Discov. 2011, 10, 643–644; (b) Prinz, F.;
Schlange, T.; Asadullah, K. Nature Rev. Drug Discov. 2011, 10, 712.
16. Sato, A.H.;Maeda, M.; Mihara, S.; Iwasawa, T.Tetrahedron Lett. 2011,52, 6284–6287.
17. (a) Sonogashira, K.; Toda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467; (b)
Sonogashira, K. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I.,
Eds.; Pergamon Press: New York, 1991; Vol. 3, p 521; (c) Sonogashira, K. In
Metal-Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-
VCH: Weinheim, Germany, 1998; p 203.
Supplementary data associated with this article can be found, in
References and notes
1. (a) Ruan, J.; Xiao, J. Acc. Chem. Res. 2011, 44, 614–626; (b) Ma, D.; Cai, Q. Acc.
Chem. Res. 2008, 41, 1450–1460; (c) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem.
Soc. 2000, 122, 4020–4028.
18. Hydrohalogenation of 1-ethynyl-4-methylbenzene was attempted with TMSBr
and TMSCl, however, TMS-Br gave only trace amounts of
a-vinyl bromide and
TMS-Cl did not serve at all as source of hydrochlorination. In both
a
2. (a) Negishi, E. Organometallics in Organic Synthesis; Wiley: New York, 1980; (b)
Wakefield, B. J. The Chemistry of Organolithium Compounds; Pergamon Press:
Oxford, UK, 1974; (c) Brandsma, L.; Verkruijsse, H. Preparative Polar
Organometallic Chemistry 1; Springer: Berlin, 1987; (d) Wakefield, B. J.
Organolithium Methods; Academic Press: London, 1988; (e) Brandsma, L.
Preparative Polar Organometallic Chemistry 2; Springer: Berlin, 1990; (f)
Willard, P. G. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I.,
Eds.; Pergamon Press: Oxford, UK, 1991; Vol. 1, p 1; (g) Schlosser, M. In
experiments, most of the starting alkyne remained.
19. (a) Walsh, R. Acc. Chem. Res. 1981, 14, 246–252; (b) Doncaster, A. M.; Walsh, R.
J. Phys. Chem. 1979, 83, 3037–3040.
20. We purchased the seal-tubed TMSI (5 g) in neat form from Tokyo Chemical
Industry Co., LTD, and it included a portion of Al metal inside the tube for
inhibiting the decomposition of TMSI. 5 g of TMSI was added to 24 mL of dried
CH2Cl2 along with the Al metal as a solid, thus providing colorless 1 M CH2Cl2
solution of TMSI for our experimental usage. The Al metal would not have a
crucial role for the reactivity of the TMSI solution: actually, the reactivity of the
freshly prepared TMSI solution was not influenced by with or without the
metal. The stock solution in the presence of the Al metal was stable for at least
two weeks, although it turned to slightly red colored solution.
Organometallics in Synthesis
A Manual; Schlosser, M., Ed., 2nd ed.; Wiley:
Chichester, UK, 2002; pp 1–352.
3. (a) Neumann, H.; Seebach, D. Chem. Ber. 1978, 111, 2785; (b) Evans, D. A.;
Crawford, T. C.; Thomas, R. C.; Walker, J. A. J. Org. Chem. 1976, 41, 3947.