Journal of the American Chemical Society
Page 6 of 14
Nickel-Catalyzed Suzuki–Miyaura Reaction of Aryl Fluorides. J. Am.
arylation of methyl phenyl sulfone. Angew. Chem. Int. Ed. 2014, 53,
742–746.
Chem. Soc. 2011, 133, 19505−19511. (c) Muto, K.; Yamaguchi, J.;
Musaev, D. G.; Itami, K. Decarbonylative organoboron cross-coupling
of esters by nickel catalysis. Nat. Commun. 2015, 6, 1–8. (d) Wang, J.;
Qin, T.; Chen, T. G.; Wimmer, L.; Edwards, J. T.; Cornella, J.; Vokits,
B.; Shaw, S. A.; Baran, P. S. Nickel-Catalyzed Cross-Coupling of
Redox-Active Esters with Boronic Acids. Angew. Chem., Int. Ed. 2016,
55, 9676–9679. (e) Wu, K.; Doyle, A. G. “Parameterization of
phosphine ligands demonstrates enhancement of nickel catalysis via
remote steric effects” Nature Chem. 2017, 9, 779–784.
1
2
3
4
5
6
7
(15) Merchant, R. R.; Edwards, J. T.; Qin, T.; Kruszyk, M. M.; Bi,
C.; Che, G.; Bao, D.-H.; Qiao, W.; Sun, L.; Collins, M. R.; Fadeyi, O.
O.; Gallego, G. M.; Mousseau , J. J.; Nuhant, P.; Baran, P. S. Modular
radical cross-coupling with sulfones enables access to sp3-rich
(fluoro)alkylated scaffolds. Science, 2018, 360, 75–80.
(16) Miao, W.; Zhao, Y.; Ni, C.; Gao, B.; Zhang, W.; Hu, J. Iron-
Catalyzed Difluoromethylation of Arylzincs with Difluoromethyl 2-
Pyridyl Sulfone. J. Am. Chem. Soc. 2018, 140, 880–883.
8
9
(17) Wenkert, E.; Ferreira, T. W.; Michelotti, E. L. Nickel-induced
Conversion of Carbon–Sulphur into Carbon-Carbon Bonds. One-step
Transformations of Enol Sulphides into Olefins and Benzenethiol
Derivatives into Alkylarenes and Biaryls. J. Chem. Soc. Chem.
Commun. 1979, 637– 638.
(10) (a) Meadows, D. C.; Gervay-Hague, J. Vinyl Sulfones:
Synthetic Preparations and Medicinal Chemistry Applications. Med.
Res. Rev. 2006, 26,793–814. (b) Patai, S.; Rappoport, Z.; Stirling, C. J.
M. The Chemistry of Sulphones and Sulphoxides; Wiley: New York,
1988.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(18) (a) Fabre, J.-L.; Julia, M.; Verpeaux, J.-N. Couplage mixte entre
sulfones vinyliques et réactifs de grignard en présence de sels de métal
de transition: synthèse stéréosélective d'oléfines trisubstituées.
Tetrahedron Lett. 1982, 23, 2469–2472. (b) Clayden, J.; Julia, M.
ortho-Substituted Unsymmetrical Biaryls from Aryl tert-Butyl
Sulfones. J. Chem. Soc., Chem. Commun. 1993, 1682–1683. (c)
Clayden, J.; Cooney, J. J. A.; Julia, M. Nickel-catalysed Substitutions
of Aryl tert-Butyl Sulfones with Organometallic Reagents: Synthesis
of ortho-Substituted Unsymmetrical Biaryls. J. Chem. Soc. Perkin
Trans. 1 1995, 7−14.
(11) (a) Dubbaka, S. R.; Vogel, P. Organosulfur Compounds:
Electrophilic Reagents in Transition-Metal-Catalyzed Carbon–Carbon
Bond-Forming Reactions. Angew. Chem. Int. Ed. 2005, 44, 7674–7684.
(b) Wang, L.; He, W.; Yu, Z. Transition-metal mediated carbon–sulfur
bond activation and transformations. Chem. Soc. Rev. 2013, 42, 599–
621. (c) Modha, S. G.; Mehta, V. P.; Van der Eycken, E. V. Transition
metal-catalyzed C–C bond formation via C–S bond cleavage: an
overview. Chem. Soc. Rev. 2013, 42, 5042–5055. (d) Pan, F.; Shi, Z.-J.
Recent Advances in Transition-Metal-Catalyzed C−S Activation: From
Thioester to (Hetero)aryl Thioether. ACS Catal. 2014, 4, 280–288.
(12) (a) Markovic, T.; Murray, P. R. D.; Rocke, B. N.; Shavnya, A.;
Blakemore, D. C.; Willis, M. C. Heterocyclic allylsulfones as latent
heteroaryl nucleophiles in palladium-catalyzed cross-coupling
reactions. J. Am. Chem. Soc. 2018, 15916–15923. (b) Markovic, T.;
Rocke, B. N.; Blakemore,D. C.; Mascitti, V.; Willis, M. C. Catalyst
selection facilitates the use of heterocyclic sulfinates as general
nucleophilic coupling partners in palladium-catalyzed coupling
reactions. Org. Lett. 2017, 19, 6033–6035. (c) Markovic, T.; Rocke, B.
N.; Blakemore, D. C.; Mascitti, V.; Willis, M. C. Pyridine sulfinates as
general nucleophilic coupling partners in palladium-catalyzed cross-
coupling reactions with aryl halides. Chem. Sci. 2017, 8, 4437–4442. (d)
Takahashi, F.; Nogi, K.; Yorimitsu, H. Intramolecular Desulfitative
Coupling: Nickel-Catalyzed Transformation of Diaryl Sulfones into
Biaryls via Extrusion of SO2. Org. Lett. 2018, 20, 6601−6605. (e) Zhao,
F.; Tan, Q.; Xiao, F.; Zhang, S.; Deng, G.-J. Palladium-Catalyzed
Desulfitative Cross-Coupling Reaction of Sodium Sulfinates with
Benzyl Chlorides. Org. Lett., 2013, 15,1520–1523. (f) Zhou, C.; Liu,
Q.; Li, Y.; Zhang, R.; Fu, X.; Duan, C. Palladium-catalyzed
desulfitative arylation by C-O bond cleavage of aryl triflates with
sodium arylsulfinates. J. Org. Chem. 2012, 77, 10468–10472. For a
review, see: (g) Ortgies, D. H.; Hassanpour, A.; Chen, F.; Woo, S.;
Forgione, P. Desulfination as an Emerging Strategy in Palladium-
Catalyzed C-C Coupling Reactions. Eur. J. Org. Chem. 2016, 2016,
408–425.
(13) (a) Wu, J.-C.; Gong, L.-B.; Xia, Y.; Song, R.-J.; Xie, Y.-X.; Li,
J.-H. Nickel-Catalyzed Kumada Reaction of Tosylalkanes with
Grignard Reagents to Produce Alkenes and Modified Arylketones.
Angew. Chem. Int. Ed. 2012, 51, 9909–9913. (b) Denmark, S. E.;
Cresswell, A. J. Iron-Catalyzed Cross-Coupling of Unactivated
Secondary Alkyl Thio Ethers and Sulfones with Aryl Grignard
Reagents. J. Org. Chem. 2013, 78, 12593–12628.
(14) (a) Ariki, Z. T.; Maekawa, Y.; Nambo, M.; Crudden, C. M.
Preparation of Quaternary Centers via Nickel-Catalyzed
Suzuki−Miyaura Cross-Coupling of Tertiary Sulfones. J. Am. Chem.
Soc. 2018, 140, 78–81. (b) Yim, J. C.; Nambo, M.; Crudden, C. M. Pd-
Catalyzed Desulfonative Cross-Coupling of Benzylic Sulfone
Derivatives with 1,3-Oxazoles. Org. Lett. 2017, 19, 3715–3718. (c)
Nambo, M.; Keske, E. C.; Rygus, J. P. G.; Yim, J. C. H.; Crudden, C.
M. Development of Versatile Sulfone Electrophiles for Suzuki–
Miyaura Cross-Coupling Reactions. ACS Catalysis 2017, 7, 1108–
1112. (e) Nambo, M.; Crudden, C. M., Recent Advances in the
Synthesis of Triarylmethanes by Transition Metal Catalysis. ACS
Catalysis 2015, 5, 4734–4742. (f) Nambo, M.; Crudden, C. M. Modular
synthesis of triarylmethanes through palladium-catalyzed sequential
(19) Someya, C. I.; Weidauer, M.; Enthaler, S. Nickel-catalyzed
C(sp2)–C(sp2) Cross Coupling Reactions of Sulfur-Functionalities and
Grignard Reagents. Catal. Lett. 2013, 143, 424−431.
(20) (a) Li, R.-Z.; Tang, H.; Wan, L. Q.; Zhang, X.; Fu, Z.; Liu, J.;
Yang, S.; Niu, D. Site-Divergent Delivery of Terminal Propargyls to
Carbohydrates by Synergistic Catalysis. Chem. 2017, 3, 1–12. (b) Li,
R.-Z.; Tang, H.; Yang, K. R.; Wan, L. Q.; Zhang, X.; Liu, J.; Fu, Z.;
Niu, D. Enantioselective Propargylation of Polyols and
Desymmetrization of meso 1,2-Diols by Copper/Borinic Acid Dual
Catalysis. Angew. Chem. Int. Ed. 2017, 56, 7213–7217. (c) Shang, W.;
Mou, Z. D.; Tang, H.; Zhang, X.; Liu, J.; Fu, Z.; Niu, D. Site-Selective
O-Arylation of Glycosides. Angew. Chem. Int. Ed. 2018, 57, 314–318.
(21) (a) Potuzak, J. S.; Tan, D. S. Synthesis of C1-alkyl- and
acylglycals from glycals using a B-alkyl Suzuki–Miyaura cross
coupling approach. Tetrahedron Lett. 2004, 45, 1797–1801. (b)
Friesen, R. W.; Loo, R. W. Preparation of C-Aryl Glucals via the
Palladium-Catalyzed Coupling of Metalated Aromatics with 1-Iodo-
3,4,6-tri-O-(triisopropylsilyl)-D-glucal. J. Org. Chem. 1991, 56, 4821–
4823. (c) Tius, M. A.; Gomez-Galeno, J.; Gu, X.; Zaidi, J. H. C-
Glycosylanthraquinone Synthesis: Total Synthesis of Vineomycinone
B2 Methyl Ester. J. Am. Chem. Soc. 1991, 113, 5775–5783. (d) Kaelin,
D. E.; Lopez, O. D.; Martin, S. F. J. Am. Chem. Soc. 2001, 123, 6937–
6938. (e) Procko, K. J. Functionalization of C-Aryl Glycals and Studies
Toward the Total Synthesis of 5-Hydroxyaloin A. The University of
Texas at Austin, Austin, 2009. For other methods of making aryl
glycals, see: (f) Koester, D. C.; Kriemen, E.; Werz, D. B. Flexible
Synthesis of 2-Deoxy-C-Glycosides and (1→2)-, (1→3)-, and
(1→4)-Linked C-Glycosides. Angew. Chem., Int. Ed. 2013, 52,
2985−2989. (g) Parkan, K.; Pohl, R.; Kotora, M. Cross-Coupling
Reaction of Saccharide-Based Alkenyl Boronic Acids with Aryl
Halides: The Synthesis of Bergenin. Chem. Eur. J. 2014, 20,
4414−4419. (h) Liu, M.; Niu, Y.; Wu, Y.-F.; Ye, X. Ligand-Controlled
Monoselective C-Aryl Glycoside Synthesis via Palladium-Catalyzed
C−H Functionalization of N-Quinolyl Benzamides with 1-Iodoglycals.
Org. Lett. 2016, 18, 1836–1839. Palladium-catalyzed Heck-type
reactions gave double-bond migrated products. For references, see: (i)
Xiong, D.-C.; Zhang, L.-H.; Ye, X.-S. Oxidant-Controlled Heck-Type
C-Glycosylation of Glycals with Arylboronic Acids: Stereoselective
Synthesis of Aryl 2-Deoxy-C-glycosides. Org. Lett. 2009, 11,
1709−1712. (j) Singh, A. K.; Kandasamy, J. Palladium catalyzed
stereocontrolled synthesis of C-aryl glycosides using glycals and
arenediazonium salts at room temperature. Org. Biomol. Chem. 2018,
16, 5107–5112. (k) Mabit, T.; Siard, A.; Legros, F.; Guillarme, S.;
Martel, A.; Lebreton, J.; Carreaux, F.; Dujardin, G.; Collet, S.
Stereospecific C-glycosylation via Mizoroki-Heck reaction, a powerful
ACS Paragon Plus Environment