Journal of Medicinal Chemistry
Article
m, −CH2b-CH-CO2, −CH2CH2NH), 1.79 (4H, m, −CH2CHO and
−CH2CH2CH2), 1.78 (3H, s, −NHCOCH3), 1.38 (6H, m,
−OCHCH2, CH2CH2CH2 and CH2CH2CH2). 13C NMR (CD3OD,
125 MHz) δ 24.68 (−NHCOCH3), 26.13 (d J(C−P) = 8.2 Hz, −CH2-
CH2-NH), 26.45 (−CH2-CH2), 32.44 (m, −CH2-CH-CO2CH2Ph,
−CH2CHO, and −OCHCH2), 48.50 (d J(C−P) = 3.7 Hz, −CH2−NH,
overlap with the solvent), 54.93 (d J(C−P) = 3.0 Hz, C-2), 56.11, 56.16
(−OCH3), 62.01 (d J(C−P) = 6.5 Hz, −CHNH), 66.84 (CH2-6), 70.18
(C-3), 71.80 (C-5), 74.41 (−OCHCH2), 79.88 (d J(C−P) = 6.4 Hz,
(CD3OD 125 MHz): δ 22.95 (−NHCOCH3), 23.00 (−NHCOCH3),
24.62 (−CH2 (cyclohex), 24.67 (−CH2 (cyclohex), 26.10 (d J(C−P)
=
8.2 Hz, −CH2CH2N), 26.48 (−CH2 (cyclohex)), 32.46 (m,
−CH2CHCO2, −CH2 (cyclohex)), 48.80 (CH2N, under the residual
solvent peak), 54.43 (d J(C−P) = 3.8 Hz, C-2), 54.35 (d J(C−P) = 3.8 Hz,
C-2), 56.12 (−OCH3), 56.17 (−OCH3), 61.62 (d J(C−P) = 7.3 Hz,
(−CHCO2), 64.42 (C-5), 69.75 (−CH2-6), 70.83 (−OCH2Ph), 74.63
(−OCHCH2), 76.64 (d J(C−P) = 7.6 Hz C-3), 76.77 (d J(C−P) = 7.6 Hz,
C-3), 81.61 (d J(C−P) = 2.0 Hz, C-4), 98.59 (C-1), 102.18 (C-1),
102.93 (−CHPh), 115.49 (−PhOCH3), 115.75 (−PhOCH3), 122.10
(d J(C−P) = 5.3 Hz, −PhOCH3), 122.29 (d J(C−P) = 5.3 Hz, −
PhOCH3), 127.77 (−CHPh), 129.20 (−CHPh), 129.22 (−CH2Ph),
129.57 (−CH2Ph), 129.62 (−CH2Ph), 130.11(−CHPh), 138.51
(“ipso” −CHPh) 138.95 (“ipso” −CH2Ph), 145.7 (d J(C−P) = 7.6 Hz
“ipso” −POPh), 158.05 (“ipso” −PhOCH3), 173.38, (−NHCOCH3),
173.47 (−NHCOCH3), 174.30 (−CO2(cyclohexyl)). 31P NMR
(CD3OD 202 MHz): 0.96, 0.58 (ratio 10:1).
Standard Procedure 4: Synthesis of Phosphoramidates 9t−y by
Hydrogenation of 14t and 15u−y. A solution of 2-acetamido-2-
deoxy-4,6-O-benzylidene-3-O-substituted-phosphate-(D)-glucopyra-
nose 14t or 1-O-benzyl-2-acetamido-2-deoxy-4,6-O-benzylidene-3-O-
substituted-phosphate-(D)-glucopyranose 15u−y (0.28 mmol) was
hydrogenated in MeOH or ethanol (5 mL) under pressure of 54 psi
for 6 h in presence of a catalyst (10% Pd/C or 10% Pd(OH)2/C). The
catalyst was removed by filtration through a Celite pad. and the solvent
was removed under reduced pressure to obtain pure compounds
unless specified otherwise.
C-4), 92.70 (C-1), 97.65 (C-1), 115.78 (−PhOCH3), 122.29 (d J(C−P)
=
4.4 Hz, −PhOCH3), 145.51 (d J(C−P) = 8.1 Hz, “ipso” −POPh), 158.43
(“ipso” −PhOCH3), 173.25 (−COCH3), 175.25, 176.31 (−CO2CH2).
31P NMR (CD3OD, 202 MHz): 3.16, 2.53, 2.24, ratio (6.1:5.9:1). MS
(E/I) 587.11 (MNa+). HPLC: (gradient H2O/CH3CN from 70/30 to
H2O/CH3CN: 0/100 in 20 min, flow = 1 mL/min, λ = 275 nm): tR
12.51 min, 12.84 min.
Further elution with CH2Cl2/MeOH 97/3 afforded 9v as a mixture
1
of Rp and Sp diastereoisomers as α and β anomers in 1.3% yield. H
NMR (CD3OD, 500 MHz): δ 7.15 (1H, m, −OPh), 7.01 (1H, d, J =
9.2 Hz, −OPh), 6.78 (1H, d, J = 9.2 Hz, −OPh), 6.70 (1H, d, J = 9.2
Hz, −OPh), 4.98 (0.8H, d, J = 3.9 Hz, −CH-1), 4.62 (1.2H, m, CH-1
and −OCHCH2), 4.39 (0.8H, m, −CH-3), 4.22 (0.2H, m, −CH-3),
4.11 (1H, m, −NCHCO2) 3.99 (1H, m, −CH-2), 3.75 (1H, m,
−CH-5), 3.67 (5H, m, −CH2-6 and PhOCH3), 3.51 (0.8H, t J = 9.6 Hz,
−CH-4), 3.44 (0.2H, d J = 9.6 Hz, −CH-4), 3.30 (1H, m, −CH2aNH),
3.20 (1H, m, −CH2bNH, overlap with the solvent), 2.10 (1H, m,
CH2a-CH-CO2) 1.91, 1.90 (3H, s, −NHCOCH3), 1.81 (3H,
CH2bCHCO2, −CH2CH2NH), 1.63 (4H, m, −CH2CHO and
−CH2CH2CH2), 1.28 (6H, m, −OCHCH2, CH2CH2CH2, and
CH2CH2CH2). 13C NMR (CD3OD, 125 MHz): δ 23.01, 23.33
(−NHCOCH3), 24.62 (−CH2CH2CH2), 26.10, 26.25 (d J(C−P) = 8.2
Hz, −CH2-CH2-NH), 26.46 (−CH2CH2CH2), 32.46 (m, −CH2-CH-
CO2CH2Ph, −CH2CHO, and −OCHCH2), 48.80 (d J(C−P) = 3.7 Hz,
−CH2-NH, overlap with the solvent), 54.59 (d J(C−P) = 3.8 Hz, C-2),
56.05, 56.09 (−OCH3), 61.96 (d J(C−P) = 7.3 Hz, −CH2CHNH),
66.46, 62.61 (−CH2-6), 70.80, 70.90 (d J(C−P) = 3.1 Hz, C-4), 74.44,
74.74 (−OCHCH2), 74.82 (C-5), 81.05 (d J(C−P) = 7.0 Hz, C-3),
82.87 (d J(C−P) = 8.7 Hz, C-3), 92.83 (C-1), 96.29 (C-1), 115.19,
115.58 (−PhOCH3), 122.32, 122.56 (d J(C−P) = 4.7 Hz, −PhOCH3),
145.94 (d J(C−P) = 7.1 Hz, “ipso” −POPh), 158.28 (“ipso” −PhOCH3),
173.46, 173.78 (−NHCOCH3), 174.50, 175.06 (d J(C−P) = 1.5 Hz,
−CO2CH2). 31P NMR (CD3OD, 202 MHz): 2.42, 1.80 ratio (4.4:1).
MS (E/I) 587.11 (MNa+). HPLC: (gradient H2O/CH3CN from
70/30 to H2O/CH3CN: 0/100 in 20 min, flow = 1 mL/min, λ = 275 nm):
tR 11.97 min, 12.24 min.
2-Acetamido-2-deoxy-3-O-[4-methoxyphenyl-(cyclohexyloxy-(L)-
prolinyl)]-phosphate-(D)-glucopyranose (9v). The compound was
prepared as described in standard procedure 4 (EtOH, 10% Pd(OH)2/
C) and obtained in 12% yield as a mixture of Rp and Sp
diastereoisomers as α and β anomers, after purification by preparative
TLC using CH2Cl2/MeOH 92/8 (V/V). 1H NMR (CD3OD 500
MHz): δ 7.15 (1.5H, m, −OPh), 7.01 (0.5H, d J = 9.2 Hz, −OPh),
6.78 (1.5H, d J = 9.2 Hz, −OPh), 6.70 (0.5H, d J = 9.2 Hz, −OPh)
4.98 (0.6H, d J = 3.9 Hz −CH-1α), 4.62 (1.3H, m, CH-1β and
−OCHCH2), 4.39 (0.6H, m, −CH-3), 4.22 (0.6H, m, −CH-3), 4.11
(0.76H, m, −CHCO2) 3.99 (0.9H, m, −CH-2), 3.75 (0.8H, m, −CH-5),
3.67 (4.8H, m, −CH2-6 and PhOCH3), 3.51 (1H, t J = 9.62 Hz,
−CH-4), 3.44 (0.5H, t J = 9.62, −CH-4), 3.30 (1H, m, −CH2aN), 3.20
(1H, m, −CH2bN, overlap with the solvent), 2.10 (1H, m,
CH2aCHCO2), 1.91 (2H, s, −NHCOCH3), 1.90 (1H, s,
−NHCOCH3), 1.81 (3H, CH2bCHCO2, −CH2CH2N), 1.63 (4H,
m, −CH2 (cyclohex)), 1.28 (6H, m, −CH2 (cyclohex)). 13C NMR
(CD3OD 125 MHz): δ 23.01 (−NHCOCH3), 23.33 (−NHCOCH3),
24.59 (−CH2 (cyclohex)), 24.62 (−CH2 (cyclohex)), 26.10 (d J(C−P)
=
9v was also obtained from 15v according to standard procedure 4
(see later section).
8.2 Hz, −CH2CH2N), 26.25 (d J(C−P) = 8.2 Hz, −CH2CH2N), 26.43
(−CH2 (cyclohex)), 26.46 (−CH2 (cyclohex)), 32.46 (m,
−CH2CHCO2, −CH2 (cyclohex), 48.80 (d J = 3.7 Hz, −CH2N,
overlap with the solvent), 54.59 (d J(C−P) = 3.8, C-2), 56.05 (−OCH3),
56.09 (−OCH3), 61.96 (d J(C−P) = 7.3 Hz, (−CHCO2), 66.46 (−CH2-6),
Standard Procedure 3: Synthesis of Protected Phosphoramidates
15u−y Using t-BuMgCl. To a solution of 1-O-benzyl-N-acetyl-4,6-O-
benzylidene-(D)-glucosamine (1.98 mmol) in THF (20 mL),
t-BuMgCl (3.97 mL, 3.96 mmol) was added at rt. Then a solution
of appropriate phosphorochloridate (5.98 mmol) in THF (5 mL) was
added dropwise. After 1 h, the solvent was removed under vacuum and
the crude purified by flash chromatography using like eluent a gradient
of EtPt/EtOAc 5/5 to EtOAc (V/V).
1-O-Benzyl-2-acetamido-2-deoxy-4,6-O-benzylidene-3-O-[4-me-
thoxyphenyl-(cyclohexyloxy-(L)-prolinyl)-phosphate-(D)-glucopyra-
nose (15v). The compound was obtained as described in standard
procedure 3 in 41% yield as a mixture of Rp and Sp diastereoisomers
as α and β anomers. 1H NMR (CD3OD 500 MHz): δ 7.38 (2H, d J =
7.4 Hz, −CHPh), 7.19 (8H, m, −CHPh and −CH2Ph), 6.95 (0.2H, d
J = 8.7 Hz, −OPh), 6.81 (1.8H, d J = 8.7 Hz, −OPh), 6.75 (0.2H, d J =
9.2 Hz, −OPh), 6.52 (1.8H, d J = 8.75 Hz, −OPh), 5.47 (1H, s,
−CHPh), 4.76 (1H, d J = 3.6 Hz −CH-1, α), 4.61 (3H, m, −CH-3,
−OCHCH2, and CH2aPh), 4.43 (1H, d J = 10.3 Hz, CH2bPh), 4.21
(1H, m, −CH-2), 4.07 (1H, dd J = 10.18 and 4.7 Hz, −CH2a6), 4.02
(1H, m, −CHCO2), 3.77 (1H, m, −CH-5), 3.66 (2H, m, −CH-4 and
−CH2b6), 3.56 (2.5H, s, −OCH3), 3.55 (0.5H, s, −OCH3), 3.14 (2H,
m, −CH2N), 1.87 (3H, s, −NHCOCH3), 1.63 (8H, −CH2CH2N,
−CH2 (cyclohex)), 1.30 (6H, m, −CH2, (cyclohex)). 13C NMR
62.610 (CH2-6), 70.80 (d J(C−P) = 3.1 Hz, C-4), 70.90 ((d J(C−P)
=
3.1 Hz, C-4), 72.95 (C-5), 74.44 (−OCHCH2), 74.74 (−OCHCH2),
77.52 (C-5), 81.05 (d J(C−P) = 7.0 Hz, C-3), 82.87 (d J(C−P) = 8.7 Hz,
C-3), 92.83 (C-1α), 96.29 (C-1β), 115.19 (−PhOCH3), 115.58
(−PhOCH3), 122.32 (d J(C−P) = 4.7 Hz, −PhOCH3), 122.56 (d J(C−P)
=
4.3 Hz, −PhOCH3), 145.94 (d J(C−P) = 7.1 Hz “ipso” −POPh), 158.28
(“ipso” −PhOCH3), 173.46, (−NHCOCH3), 173.78, (−NHCOCH3),
174.50 (d J(C−P) = 1.5 Hz, −CO2cyclohex), 175.06 (d J(C−P) = 1.5 Hz,
−CO2cyclohexyl). 31P NMR (CD3OD 202 MHz): 2.42, 1.80 (ratio
10:4). MS (ES+) 609.2 (MNa+). HPLC: (gradient H2O/CH3CN
from 100/0 to 0/100 in 15 min, flow = 1 mL/min, λ = 275 nm): tR
13.75 min, 14.19 min.
31P NMR Stability Assay in Human and Guinea Pig Serum. The
phosphoramidate (10 mg) is dissolved in DMSO (50 μL) and D2O
(150 μL), into an NMR tube. The NMR tube is warmed in the NMR
chamber at 37 °C. Then either the human serum or the guinea pig
serum (300 μL) was added to the NMR tube quickly. NMR
experiments were programmed into the computer to record data every
15 min usually for 12 h (overnight) or longer if needed. The data was
4637
dx.doi.org/10.1021/jm300074y | J. Med. Chem. 2012, 55, 4629−4639