Organic Letters
Letter
1
K.; Kaburagi, Y.; Fukuyama, T. J. Am. Chem. Soc. 2003, 125, 4048.
(b) Cardona, F.; D'Orazio, G.;Silva, A. M. S.;Nicotra, F.; La Ferla, B. Eur.
J. Org. Chem. 2014, 2549. (c) Zhang, J.; Zheng, S.; Peng, W.; Shen, Z.
Tetrahedron Lett. 2014, 55, 1339.
(11) Seeman, J. I. Chem. Rev. 1983, 83, 83.
(12) For examples where allylmagnesium halides exhibit low selectivity
Experimental procedures, characterization data, H and
13C NMR spectroscopic data, GC traces, stereochemical
correlations, and X-ray structures (PDF)
X-ray data for compound S5 (CIF)
X-ray data for compound S11′ (CIF)
but other reagents are selective, see: (a) Marco, J. A.; Carda, M.;
́
Gonzalez, F.; Rodríguez, S.; Castillo, E.; Murga, J. J. Org. Chem. 1998, 63,
AUTHOR INFORMATION
■
698. (b)Qian, X.;Sujino, K.;Otter, A.;Palcic, M. M.;Hindsgaul, O. J. Am.
Corresponding Author
ORCID
̌
Chem. Soc. 1999, 121, 12063. (c) Smaltz, D. J.; Svenda, J.; Myers, A. G.
Org. Lett. 2012, 14, 1812.
(13) Selectivities were determined by 1H and 13C NMR spectroscopy.
The first number in each product ratio corresponds to the indicated
stereoisomer. Details of stereochemical proofs are provided as
Notes
(14) The 1-propenyl Grignard reagent was used as an E/Z mixture.
(15) Walker, F. W.; Ashby, E. C. J. Am. Chem. Soc. 1969, 91, 3845.
(16) Schlenk, W.; Schlenk, W., Jr. Ber. Dtsch. Chem. Ges. 1929, 62, 920.
(17) Ashby, E. C.; Laemmle, J.; Neumann, H. M. Acc. Chem. Res. 1974,
7, 272.
(18) Parris, G. E.; Ashby, E. C. J. Am. Chem. Soc. 1971, 93, 1206.
(19) Schnegelsberg, C.; Bachmann, S.; Kolter, M.; Auth, T.; John, M.;
Stalke, D.; Koszinowski, K. Chem. - Eur. J. 2016, 22, 7752.
(20) A variety of Lewis acid additives such as MgBr2·Et2O, SnCl4, and
TiCl4 were screened, and no increase in diastereoselectivity was
observed. Attempts at influencing the selectivity by modifying the
ligands on magnesium also did not give satisfactory results.
(21) Read, J. A.; Woerpel, K. A. J. Org. Chem. 2017, 82, 2300.
(22) Rate acceleration due to the presence of α-alkoxy substituents has
also been observed in Mukaiyama aldol and hetero-Diels−Alder
reactions: Reetz, M. T. Acc. Chem. Res. 1993, 26, 462.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Acknowledgment is made to the Donors of the American
Chemical Society Petroleum Research Fund for partial support of
this research (57206-ND1). Additional support was provided by
the National Institutes of Health, National Institute of General
Medical Sciences (GM-61066). J.A.R. was supported by a
Margaret Strauss Kramer Fellowship from the NYU Department
of Chemistry. K.A.W. thanks the Global Research Initiatives,
NYU and NYU Florence, for a fellowship. We thank Dr. Elizabeth
́
M. Valentın (NYU) for valuable discussions. We thank Dr. Chin
Lin (NYU) for assistance with NMR spectroscopy and mass
spectrometry and Dr. Chunhua Hu (NYU) for assistance with
crystallographic studies.
(23) Benkeser, R. A. Synthesis 1971, 347.
(24) For examples of α-alkoxy aldehydes reacting with low
diastereoselectivity, see: (a) Yang, W.-Q.; Kitahara, T. Tetrahedron
2000, 56, 1451. (b) Denmark, S. E.; Yang, S.-M. J. Am. Chem. Soc. 2004,
126, 12432. (c) Suzuki, A.; Sasaki, M.; Nakagishi, T.; Ueda, T.; Hoshiya,
N.; Uenishi, J. Org. Lett. 2016, 18, 2248.
(25) Obtaining precise relative rates of addition in this case is
complicated, presumably due to competitive enolization. HRMS
confirmed the presence of multiple aldol addition and condensation
products in the reaction mixture.
(26) The absence of chelation-induced rate acceleration in these
reactions with α-alkoxy aldehydes may be due to the markedly higher
reactivity of aldehydes compared to ketones: Brown, H. C.; Wheeler, O.
H.; Ichikawa, K. Tetrahedron 1957, 1, 214.
(27) Charette, A. B.; Benslimane, A. F.; Mellon, C. Tetrahedron Lett.
1995, 36, 8557.
DEDICATION
■
WededicatethispapertothememoryofthelateProfessorRobert
A. Benkeser of Purdue University (1920−2017), who made
important contributions to the study of allylic Grignard reagents
and their reactions.
REFERENCES
■
(1)Forrecentexamplesinnaturalproductsynthesis, see:(a)Crimmins,
M. T.; Dechert, A.-M. R. Org. Lett. 2012, 14, 2366. (b) Matthies, S.;
Stallforth, P.; Seeberger, P. H. J. Am. Chem. Soc. 2015, 137, 2848.
(c) Trost, B. M.; Biannic, B.; Brindle, C. S.; O’Keefe, B. M.; Hunter, T. J.;
Ngai, M.-Y. J. Am. Chem. Soc. 2015, 137, 11594.
(2) Cram, D. J.; Kopecky, K. R. J. Am. Chem. Soc. 1959, 81, 2748.
(3) Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1984, 23, 556.
(4) Frye, S. V.; Eliel, E. L.; Cloux, R. J. Am. Chem. Soc. 1987, 109, 1862.
(5) Chen, X.; Hortelano, E. R.; Eliel, E. L.; Frye, S. V. J. Am. Chem. Soc.
1992, 114, 1778.
(6) Mori, S.; Nakamura, M.; Nakamura, E.; Koga, N.; Morokuma, K. J.
Am. Chem. Soc. 1995, 117, 5055.
(7) This rate acceleration resulting from chelation to magnesium is not
present in reactions of β-alkoxy ketones, but a kinetic advantage is
observed when β-alkoxy ketones chelate with titanium and chromium
(28) Wen, C. Y. Ind. Eng. Chem. 1968, 60, 34.
(29) We cannot definitively assign the rate-determining step, however.
Due to the heterogeneity of the reaction mixture, the reaction could
occur in solution, within the suspended solid, or at the surface of that
solid.
(30) For other NMR studies of complexes between carbonyl
compounds and Lewis acids, see: (a) Keck, G. E.; Castellino, S. J. Am.
Chem. Soc. 1986, 108, 3847. (b) Reetz, M. T.; Hullmann, M.; Seitz, T.
̈
Angew. Chem., Int. Ed. Engl. 1987, 26, 477. (c) Stanton, G. R.; Johnson, C.
N.; Walsh, P. J. J. Am. Chem. Soc. 2010, 132, 4399.
reagents: Kauffmann, T.; Moller, T.; Rennefeld, H.; Welke, S.;
̈
(31) Binding constants could not be determined because the signal
associated with the ketone decreased upon addition of MgBr2. After
addition of 2 equiv, only 25% of ketone 12 was in solution, as determined
by 1H NMR spectroscopy with an internal standard.
(32)Inthechelationexperimentsreportedinref5, aphenylketonewith
an α-OTBS group (not generally capable of chelation) shows larger
downfield shifts in CD2Cl2 than those observed here with ketone 12 in
THF-d8.
Wieschollek, R. Angew. Chem., Int. Ed. Engl. 1985, 24, 348.
(8) Mengel, A.; Reiser, O. Chem. Rev. 1999, 99, 1191.
(9) For recent examples, see: (a) Crimmins, M. T.; Ellis, J. M.; Emmitte,
K. A.; Haile, P. A.; McDougall, P. J.; Parrish, J. D.; Zuccarello, J. L. Chem. -
Eur. J. 2009, 15, 9223. (b) Yamashita, S.; Ishihara, Y.; Morita, H.;
Uchiyama, J.; Takeuchi, K.; Inoue, M.; Hirama, M. J. Nat. Prod. 2011, 74,
́
357. (c) Moume-Pymbock, M.; Furukawa, T.; Mondal, S.; Crich, D. J.
Am. Chem. Soc. 2013, 135, 14249. (d) Kita, M.; Oka, H.; Usui, A.;
Ishitsuka, T.; Mogi, Y.; Watanabe, H.; Tsunoda, M.; Kigoshi, H. Angew.
Chem., Int. Ed. 2015, 54, 14174.
(10) Some reactions of allylmagnesium halides can give the product
expectedbythechelation-controlmodel. Forexamples, see:(a)Shimada,
D
Org. Lett. XXXX, XXX, XXX−XXX