LETTER
Direct Synthesis of Organic Azides from Alcohols
1337
yield of azide decreased to 62% then 24% as the substitu-
ent R2 became bulkier (Me → Et → n-Bu; Table 2, entries
12–14). In certain cases, the yield of azide 3 was improved
when excess amount of 1 was used (Table 2, entry 14 vs.
15 and entry 16 vs. 17). However, diphenylmethanol 2o
was efficiently converted into the azide 3o in high yield
even though only a slightly excess amount of 1 was used
(Table 2, entry 18).
Acknowledgment
This work was partially supported by Daiichi Sankyo Co., Ltd. and
JGC-S Scholarship Foundation.
References and Notes
(1) (a) Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297.
(b) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew.
Chem. Int. Ed. 2005, 44, 5188. (c) Bräse, S.; Banert, K.
Organic Azides 2010.
In the reaction of triphenylmethanol (2p), the correspond-
ing azide 3p was not formed when DBU was used as the
base (Table 2, entry 19), but was obtained in 88% yield
when KOt-Bu was used as the base (Table 2, entry 20). As
shown in entry 21 (Table 2), 1,1-diphenylethanol (2q) was
not transformed to azide but to the elimination product
1,1-diphenylethene (5), in 29% yield.
(2) For reviews, see: (a) Stuckwisch, C. G. Synthesis 1973, 469.
(b) Gololobov, Y. G.; Zhmurova, I. N.; Kasukhin, L. F.
Tetrahedron 1981, 37, 437. (c) Gololobov, Y. G.; Kasukhin,
L. F. Tetrahedron 1992, 48, 1353. (d) Mölina, P.; Vilaplana,
M. J. Synthesis 1994, 1197. (e) Dehnicke, K.; Weller, F.
Coord. Chem. Rev. 1997, 158, 103. (f) Kohn, M.;
Breinbauer, R. Angew. Chem. Int. Ed. 2004, 43, 3106.
(3) For reviews, see: (a) Bayley, H.; Knowles, J. R. Methods
Enzymol. 1977, 46, 69. (b) Bayley, H. Photogenerated
Reagents in Biochemistry and Molecular Biology; Elsevier:
New York, 1983. (c) Fedan, J. S.; Hogaboom, G. K.;
O’Donnell, J. P. Biochem. Pharmacol. 1984, 33, 1167.
(d) Radominska, A.; Rdrake, R. Methods Enzymol. 1994,
230, 330.
Table 3 Reaction of Nonbenzylic Alcohol with ADMP (1)a
DBU
n-octyl
Ph
N
+
1
R
OH
R
N3
THF
0 °C, 1.5 h
N
N
2
3
6
(4) For reviews, see: (a) Huisgen, R. In 1,3-Dipolar
Cycloaddition Chemistry, Vol. 1; Padwa, A., Ed.; Wiley:
New York, 1984, 1–176. (b) Kolb, H. C.; Finn, M. G.;
Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004.
(c) Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J.
Org. Chem. 2006, 51. (d) Binder, W. H.; Sachsenhofer, R.
Macromol. Rapid Commun. 2007, 28, 15. (e) Becer, C. R.;
Hoogenboom, R.; Schubert, U. S. Angew. Chem. Int. Ed.
2009, 48, 4900. (f) Amblard, F.; Cho, J. H.; Schinazi, R. F.
Chem. Rev. 2009, 109, 4207.
(5) Direct synthesis of organic azides from alcohols by
Mitsunobu-type reaction using Ph3P, see: (a) Loibner, H.;
Zbiral, E. Helv. Chim. Acta 1976, 59, 2100. (b) Lal, B.;
Pramanik, B. N.; Manhas, M. S.; Bose, A. K. Tetrahedron
Lett. 1977, 1977. (c) ZnN3: Viaud, M. C.; Rollin, P.
Synthesis 1990, 130. (d) Saito, A.; Saito, K.; Tanaka, A.;
Oritani, T. Tetrahedron Lett. 1997, 38, 3955.
(6) Direct synthesis of organic azides from alcohols without
Ph3P. Methods using DPPA (-type reagent), see:
(a) Thompson, A. S.; Humphrey, G. R.; DeMarco, A. M.;
Mathre, D. J.; Grabowski, E. J. J. J. Org. Chem. 1993, 58,
5886. (b) Mizuno, M.; Shioiri, T. Chem. Commun. 1997,
2165. For other methods, see: (c) Sampath Kumar, H. M.;
Subba Reddy, B. V.; Anjaneyulu, S.; Yadav, J. S.
Tetrahedron Lett. 1998, 39, 7385. (d) Yu, C.; Hu, L. Org.
Lett. 2000, 2, 1959. (e) Iranpoor, N.; Firouzabadi, H.;
Akhlaghinia, B.; Nowrouzi, N. Tetrahedron Lett. 2004, 45,
3291. (f) Rad, M. N. S.; Behrouz, S.; Khalafi-Nezhad, A.
Tetrahedron Lett. 2007, 48, 3445.
Yield (%)b
Entry
R
2
Product
1
2
3
4
5
6
(E)-PhCH=CHCH2
Ph(CH2)3
2r
2s
3r
3s
6
84
86
72c
70
68
n-octyl
2t
t-Bu(Me)2SiO(CH2)10
Et3SiO(CH2)10
PhCH2CH2CH(n-Bu)
2u
2v
2w
3u
3v
3w
10 (22)d
a Unless otherwise shown, the reaction was performed with 2 (1
mmol), ADMP (1, 2 mmol), and DBU (3 mmol) in THF (5 mL).
b Isolated yield.
c After the reaction of 2t with ADMP (1),a phenyl acetylene (1.2
mmol) and CuSO4·5H2O (0.1 mmol) were added to the reaction mix-
ture (one-pot reaction), which was stirred for 2 h at r.t.
d The reaction was carried out with 2w (1 mmol), ADMP (1, 2 mmol),
and dimsyl sodium [prepared by NaH (3 mmol) and DMSO (1 mL)]
in THF (2 mL).
Next, we examined the reaction of nonbenzylic alcohols
with ADMP (1, Table 3). Allylic alcohol and various pri-
mary alkyl alcohols reacted with ADMP (1) to afford cor-
responding azides in good to high yields (Table 2, entries
1–5). As shown in entries 4 and 5 (Table 3), silyloxy
groups were found to survive under these reaction condi-
tions. The secondary alcohol 2d reacted with 1 to give the
azide 3w in 10% yield when DBU was used as the base.
The yield of 3w was improved to 22% when sodium meth-
ylsulfinylmethylide (dimsyl anion) was used as the base.
(7) Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40,
2380.
(8) (a) Kitamura, M.; Tashiro, N.; Okauchi, T. Synlett 2009,
2943. (b) Kitamura, M.; Tashiro, N.; Takamoto, Y.;
Okauchi, T. Chem. Lett. 2010, 39, 732. (c) Kitamura, M.;
Tashiro, N.; Sakata, R.; Okauchi, T. Synlett 2010, 2503.
(d) Kitamura, M.; Yano, M.; Tashiro, N.; Miyagawa, S.;
Sando, M.; Okauchi, T. Eur. J. Org. Chem. 2011, 458.
(e) Kitamura, M.; Miyagawa, S.; Okauchi, T. Tetrahedron
Lett. 2011, 52, 3158. (f) Kitamura, M.; Tashiro, N.;
Miyagawa, S.; Okauchi, T. Synthesis 2011, 1037.
In conclusion, we developed a new method for the direct
synthesis of organic azides from alcohols. Various ben-
zylic alcohols and n-alkanols converted into the corre-
sponding azides under mild conditions. The azides formed
are easily isolated because byproducts are highly soluble
in water.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2012, 23, 1335–1338