A. Vidyasagar, K. Handore and K. M. Sureshan, Angew. Chem.,
Int. Ed., 2011, 50, 8021; (c) J. W. Steed, Chem. Commun., 2011, 47,
1379.
5 (a) M. D. Loos, B. L. Feringa and J. H. V. Esch, Eur. J. Org. Chem.,
2005, 3615; (b) B.-K. An, D.-S. Lee, J.-S. Lee, Y.-S. Park, H.-S. Song
and S. Y. Park, J. Am. Chem. Soc., 2004, 126, 10232; (c) C. Wang,
D. Zhang and D. Zhu, J. Am. Chem. Soc., 2005, 127, 16372; (d)
S. Tanaka, M. Shirakawa, K. Kaneko, M. Takeuchi and
S. Shinkai, Langmuir, 2005, 21, 2163; (e) A. Ajayaghosh and
V. K. Praveen, Acc. Chem. Res., 2007, 40, 644; (f) T. Tu,
electrode. The CV experiments were recorded by scanning the
potential from 0.50 to +2.0 V (vs. Ag/AgCl), employing a scan
rate of 50 mV sꢁ1 under a N2 atmosphere. Measurements were
recorded in 5 mL of CH3CN, with 0.1 M (Bu4N)ClO4 (TBAPC)
as the supporting electrolyte.
Powder X-ray diffraction (PXRD)
The PXRD patterns of xerogel obtained from 1 : 1 mixture of
peptides 1 and picric acid before and after UV light exposure
were studied (Rigaku parallel beam optics attachment). The
instrument was operated at 35 kV and 30 mA current using Ni-
filtered Cu-Ka radiation and was calibrated with a standard
silicon sample. Samples were scanned from 5m to 45m (2q) at the
step scan mode (step size 0.03m, preset time 2 s) and the
diffraction patterns were recorded using a scintillation scan
detector.
€
W. Fang, X. Bao, X. Li and K. H. Dotz, Angew. Chem., Int. Ed.,
2011, 50, 6601.
6 (a) M. K. Nguyen and D. S. Lee, Chem. Commun., 2010, 46, 3583; (b)
A. Aggeli, M. Bell, N. Boden, J. N. Keen, P. F. Knowles,
T. C. B. McLeish, M. Pitkeathly and S. E. Radford, Nature, 1997,
386, 259; (c) S. L. Zhou, S. Matsumoto, H. D. Tian, H. Yamane,
A. Ojida, S. Kiyonaka and I. Hamachi, Chem.–Eur. J., 2005, 11,
ꢁ
1130; (d) B. Verdejo, F. Rodrıguez-Llansola, B. Escuder,
J. F. Miravet and P. Ballester, Chem. Commun., 2011, 47, 2017; (e)
T. Bartil, M. Bounekhel, C. Cedric and R. Jerome, Acta Pharm.,
2007, 57, 301; (f) G. Palui, J. Nanda and A. Banerjee, Chem.–Eur.
J., 2009, 15, 6902; (g) J.-H. Kim and T. R. Lee, Chem. Mater.,
2004, 16, 3647; (h) J. Naskar, G. Palui and A. Banerjee, J. Phys.
Chem. B, 2009, 113, 11787; (i) C.-H. Chang, Y.-H. Lin, C.-L. Yeh,
Y.-C. Chen, S.-F. Chiou, Y.-M. Has, Y.-S. Chen and C.-C. Wang,
Biomacromolecules, 2010, 11, 133; (j) B. Adhakari, G. Palui and
A. Banerjee, Soft Matter, 2009, 5, 3452; (k) Q. Chen, Y. Lv,
D. Zhang, G. Zhang, C. Liu and D. Zhu, Langmuir, 2010, 26, 3165;
(l) J. Y. Park, H. J. Oh, D. J. Kim, J. Y. Baek and S. H. Lee, J.
Micromech. Microeng., 2006, 16, 656.
7 (a) W. Cai, G. T. Wang, Y. X. Xu, X. K. Jiang and Z. T. Li, J. Am.
Chem. Soc., 2008, 130, 6936; (b) Y. Zhou, T. Yi, T. Li, Z. Zhou, F. Li,
W. Huang and C. Huang, Chem. Mater., 2006, 18, 2974; (c)
A. K. Das, P. P. Bose, M. G. B. Drew and A. Banerjee, 2007, 63, p.
7432.
8 (a) O. J. Dautel, M. Robitzer, J. P. L-Porte, F. Serein-Spirau and
J. J. E. Moreau, J. Am. Chem. Soc., 2006, 128, 16213; (b) N. Fujita,
Y. Sakamoto, M. Shirakawa, M. Ojima, A. Fujii, M. Ozaki and
S. Shinkai, J. Am. Chem. Soc., 2007, 129, 4134; (c) P. C. Xue,
R. Lu, G. J. Chen, Y. Zhang, H. Nomoto, M. Takafuji and
H. Ihara, Chem.–Eur. J., 2007, 13, 8231; (d) S. Z. Xiao, Y. Zou,
M. X. Yu, T. Yi, Y. F. Zhou, F. Y. Li and C. H. Huang, Chem.
Commun., 2007, 4758; (e) J. J. D. de Jong, L. N. Lucas,
R. M. Kellogg, J. H. van Esch and B. L. Feringa, Science, 2004,
304, 278.
Computational studies
Geometry optimizations and vibrational frequency analyses were
carried out without any symmetry constraints at the level of
density functional theory (DFT) based methods using the elec-
tronic structure program Gaussian 03. The Beck’s three param-
eter hybrid exchange functional combined with the Lee–Yang–
Parr non-local correlation function abbreviated as B3LYP has
used for calculation. The split-valence bases set with diffuse
functions, namely 6-311+G, have been employed for all atoms.
Vibrational frequencies were calculated for optimized molecular
structures to verify that no negative frequencies were present for
minimum energy structures.
Conclusions
In conclusion, we have demonstrated the fabrication of a novel
light induced organogel by a simple noncovalent supramolecular
approach. UV light has been used as a source of energy to cleave
and homogenize p-stacking and formation of charge-transfer
complex in an organogel medium. The photo irradiation has
changed the morphology of the organogel from fiber network to
nanocrystals array with a significant red emission. This photo-
induced soft material may have potential application in the
fabrication of optoelectronic devices.
9 (a) D. Bardelang, Soft Matter, 2009, 5, 1969; (b) G. Cravotto and
P. Cintas, Chem. Soc. Rev., 2009, 38, 2684.
10 (a) J. K. H. Hui, Z. Yu, T. Mirfakhrai and M. J. MacLachlan, Chem.–
Eur. J., 2009, 15, 13456; (b) G. O. Lloyd and J. W. Steed, Nat. Chem.
Biol., 2009, 5, 437; (c) H. Maeda, Chem.–Eur. J., 2008, 14, 11274; (d)
A. Ajayaghosh, P. Chithra and R. Varghese, Angew. Chem., Int. Ed.,
2007, 46, 230; (e) A. Ajayaghosh, P. Chithra, R. Varghese and
K. P. Divya, Chem. Commun., 2008, 969; (f) H.-J. Kim, J.-H. Lee
and M. Lee, Angew. Chem., Int. Ed., 2005, 44, 5810–5814.
11 (a) Z. Yang, G. Liang, L. Wang and B. Xu, J. Am. Chem. Soc., 2006,
128, 3038; (b) J. Gao, H. M. Wang, L. Wang, J. Y. Wang, D. L. Kong
and Z. M. Yang, J. Am. Chem. Soc., 2009, 131, 11286; (c) F. Zhao,
M. L. Ma and B. Xu, Chem. Soc. Rev., 2009, 38, 883–891.
12 (a) A. Ajayaghosh, S. J. George and V. K. Praveen, Angew. Chem.,
Int. Ed., 2003, 42, 332; (b) K. S. Sugiyasu, N. Fujita and S. Shinkai,
Angew. Chem., Int. Ed., 2004, 43, 1229; (c) B. Adhikari and
A. Banerjee, Chem.–Eur. J., 2010, 16, 13698; (d) H. Jintoku and
H. Ihara, Chem. Commun., 2012, 48, 1144.
Acknowledgements
We acknowledge the DST, New Delhi, India, for financial
assistance Project No. (SR/FT/CS-041/2009). P. Jana, S. Maity
and S. K. Maity wish to acknowledge the C.S.I.R, New Delhi,
India for research fellowships.
13 (a) C. Dammer, P. Maldivi, P. Terech and J.-M. Guenet, Langmuir,
1995, 11, 1500; (b) T. Sagawa, S. Fukugawa, T. Yamada and
H. Ihara, Langmuir, 2002, 18, 7223; (c) S. I. Tamaru,
M. Nakamura, M. Takeuchi and S. Shinkai, Org. Lett., 2001, 3, 3631.
14 (a) C. F. Van Nostrum, S. Picken, A.-J. Schouten and R. J. M. Nolte,
J. Am. Chem. Soc., 1995, 117, 9957; (b) H. Engelkamp, S. Middelbeek
and R. J. M. Nolte, Science, 1999, 284, 785.
Notes and references
1 (a) J. Y. Lee, Y. M. Kang, E. Kim, M. L. Kang, B. Lee, J. H. Kim,
B. H. Min, K. Park and M. S. Kim, J. Mater. Chem., 2010, 20,
3265; (b) Z. Yang, G. Liang, M. Ma, A. S. Abbah, W. W. Lu and
B. Xu, Chem. Commun., 2007, 843.
15 F. S. Schoonbeek, J. H. van Esch, B. Wegewijs, D. B. A. Rep, M. P. de
Haas, T. M. Klapwijk, R. M. Kellogg and B. L. Feringa, Angew.
Chem., 1999, 111, 1486.
16 K. Tiefenbacher, H. Dube, D. Ajami and J. Jr. Rebek, Chem.
Commun., 2011, 47, 7341.
2 J. B. Beck and S. J. Rowan, J. Am. Chem. Soc., 2003, 125, 13922.
3 U. Beginn, M. Moller, in Supramolecular Materials and Technologies,
D. N. Reinholdt, ed.; Wiley & SonsChichester, 1999; pp 89–176.
4 (a) R. G. Weiss, P. Terech, Molecular gels, Materials with self-
assembled fibrillar network, Spinger, Netherlands, 2006; (b)
This journal is ª The Royal Society of Chemistry 2012
Soft Matter, 2012, 8, 5621–5628 | 5627