retain the drug, leading to apoptosis and destruction of
target tissues.8 Additionally, the HSV1-tk gene has also
been commonly employed as the reporter gene for imaging
gene regulation and expression using positron emission
tomography (PET).9,10 Several PET reporter probes ([18F]-
20-deoxy-20-fluoro-5-methyl-1-β-D-arabinofuranosyluracil,
against HSV-1.18,19 Additionally, compared with 1and 3, the
selectivity index of 5 for HSV-1 has also been found to be
superior, implying that the imposed restrictions arising
from the presence of the cyclopropyl ring in the side chain
leads to an optimal conformation for interaction with the
enzyme.20,21 To further evaluate whether or not imposi-
tion of rigidity into the flexible side chain of FHBG 4 via
incorporation of a fluoromethylcyclopropyl ring could
also impact its efficacy, a new derivative 6 was synthesized,
characterized, and evaluated for its efficacy in HeLa (WT)
and HeLa cells stably transfected with HSV1-mNLS-
sr39TK.13 Successful execution of this strategy could also
be beneficial for designing a surrogate PET reporter probe
for comparative analysis of target sensitivity and specificity
compared with 18FHBG, an agent undergoing clinical vali-
dation for monitoring the gene expression in cancer.
We opted to substitute a fluorine atom as an isopolar
mimic of the hydroxyl group into the design of 6 due to the
following: (a) fluorine is the smallest atom that closely
mimics hydrogen and is capable of producing significant
electronic changes with minimum steric perturbation with-
in the overall geometry of bioactive molecules;22,23 (b)
fluorine can serve as an isosteric mimic of the hydroxyl
18FMAU;11 124I]-20-deoxy-20-fluoro-1-β-D-arabinofurano-
[
syl-5-iodo-uracil, 124I-FIAU;10 18FHBG;12ꢀ14 and [18F]-9-
[(3-fluoro-1-hydroxy-2-propoxy)methyl]guanine,
18FHPG15) have also been evaluated as molecular imaging
probes. Our laboratories and others have demonstrated that
18FHBG is selectively accumulated in HeLa cells transf-
ected with HSV1-sr39TK compared with their WT coun-
terparts.13,16,17 The effectiveness of these molecules to act as
either a substrate (mono- or diphosphates) or an inhibitor
(triphosphates for DNA polymerase) is likely impacted by
the ability of the side chain to mimic the interaction of the
glycosyl entity of the natural substrate with the enzyme. It is
noteworthy that flexibility in the side chain could either allow
these molecules to adopt an unfavorable conformation in
solution or represent a population of potential low-energy
rotamers. Consequently, imposing restrictions into the side
chain to achieve a conformation optimal for interaction
with the targeted enzyme could lead to enhanced biological
activity and target specificity. While 1, 2, 3, and FHBG 4
possess flexible side chains, the cyclopropylpenciclovir
A5021 5 (Figure 1), which incorporates a side chain contain-
ing a methylene spacer between the base and carbocyclic
ring, has been shown to be 20-fold more potent than 1
˚
group since the CꢀF bond length (1.39 A) is fairly close to
24
˚
that of CꢀO (1.43 A); (c) fluorine is also a hydrogen
acceptor;25,26 and (d) replacement of hydroxyl with the
fluorine has been known to increase the biological half-life
(stability) of compounds, thus providing improved ther-
apeutic effects.27 Finally, it has been demonstrated that the
20-OH position of A5021 5 ispreferentiallyphosphorylated
by TK.20
To accomplish the synthesis of 6, we also opted to preserve
the 20-OH position in the side chain for phosphorylation thus
(15) Alauddin, M. M.; Shahinian, A.; Gordon, E. M.; Conti, P. S.
Mol. Imaging 2004, 3, 76–84.
(16) Kesarwala, A. H.; Prior, J. L.; Sun, J.; Harpstrite, S. E.; Sharma,
V.; Piwnica-Worms, D. Mol. Imaging 2006, 5, 465–74.
(17) Gambhir, S.; Barrio, J.; Phelps, M.; Iyer, M.; Namavari, M.; N,
S.; Wu, L.; Green, A.; Bauer, E.; Maclaren, D.; Nguyen, K.; Berk, A.;
Cherry, D.; Herschman, H. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 2333–
2338.
(18) Sekiyama, T.; Hatsuya, S.; Tanaka, Y.; Uchiyama, M.; Ono, N.;
Iwayama, S.; Oikawa, M.; Suzuki, K.; Okunishi, M.; Tsuji, T. J. Med.
Chem. 1998, 41, 1284–1298.
(19) Onishi, T.; Matsuzawa, T.; Nishi, S.; Tsuji, T. Tetrahedron Lett.
1999, 40, 8845–8847.
Figure 1. Chemical structures of antiviral molecules.
(20) Ono, N.; Iwayama, S.; Suzuki, K.; Sekiyama, T.; Nakazawa, H.;
Tsuji, T.; Okunishi, M.; Daikoku, T.; Nishiyama, Y. Antimicrob. Agents
Chemother. 1998, 42, 2095–102.
(8) Ram, Z.; Culver, K. W.; Oshiro, E. M.; Viola, J. J.; DeVroom,
H. L.; Otto, E.; Long, Z.; Chiang, Y.; McGarrity, G. J.; Muul, L. M.;
Katz, D.; Blaese, R. M.; Oldfield, E. H. Nat. Med. 1997, 3, 1354–61.
(9) Tjuvajev, J. G.; Stockhammer, G.; Desai, R.; Uehara, H.;
Watanabe, K.; Gansbacher, B.; Blasberg, R. G. Cancer Res. 1995, 55,
6126–6132.
(10) Tjuvajev, J.; Avril, N.; Oku, T.; Sasajima, T.; Miyagawa, T.;
Joshi, R.; Safer, M.; Beattie, B.; DiResta, G.; Daghighian, F.; Augensen,
F.; Koutcher, J.; Zweit, J.; Humm, J.; Larson, S.; Finn, R.; Blasberg, R.
Cancer Res. 1998, 58, 4333–4341.
(11) Conti, P. S.; Alauddin, M. M.; Fissekis, J. R.; Schmall, B.;
Watanabe, K. A. Nucl. Med. Biol. 1995, 22, 783–9.
(12) Alauddin, M.; Conti, P. Nucl. Med. Biol. 1998, 25, 175–180.
(13) Luker, G. D; Sharma, V.; Pica, C. M.; Dahlheimer, J. L.; Li, W.;
Ochesky, J.; Ryan, C. E.; Piwnica-Worms, H.; Piwnica-Worms, D. Proc.
Natl. Acad. Sci. U.S.A. 2002, 99, 6961–6966.
(21) Neyts, J.; De Clercq, E. Antiviral Res. 2001, 49, 121–7.
(22) Rowley, M.; Hallett, D. J.; Goodacre, S.; Moyes, C.; Crawforth,
J.; Sparey, T. J.; Patel, S.; Marwood, R.; Patel, S.; Thomas, S.; Hitzel, L.;
O’Connor, D.; Szeto, N.; Castro, J. L.; Hutson, P. H.; MacLeod, A. M.
J. Med. Chem. 2001, 44, 1603–14.
(23) Wu, Y. J.; Davis, C. D.; Dworetzky, S.; Fitzpatrick, W. C.;
Harden, D.; He, H.; Knox, R. J.; Newton, A. E.; Philip, T.; Polson, C.;
Sivarao, D. V.; Sun, L. Q.; Tertyshnikova, S.; Weaver, D.; Yeola, S.;
Zoeckler, M.; Sinz, M. W. J. Med. Chem. 2003, 46, 3778–81.
(24) Husstedt, W.; Wiehle, S.; Stillig, C.; Bergander, K.; Grimme, S.;
Haufe, G. Eur. J. Org. Chem. 2011, 2011, 355–363.
(25) West, R.; Powell, D.; Whatley, L.; Lee, M.; Schleyer, P. J. Am.
Chem. Soc. 1962, 84, 3221–3222.
(26) Carosati, E.; Sciabola, S.; Cruciani, G. J. Med. Chem. 2004, 47,
5114–25.
(27) Dugar, S.; Yumibe, N.; Calder, J.; Vizzinao, M.; Huie, K.;
VanHeek, M.; Compton, D.; Davis, H., Jr. Biorg. Med. Chem. Lett.
1996, 6, 1271–1274.
(14) Luker, G.; Sharma, V.; Piwnica-Worms, D. Methods 2003, 29,
110–122.
Org. Lett., Vol. 14, No. 14, 2012
3569