Journal of the American Chemical Society
Page 6 of 8
(11) Zhang, X.-M. Homolytic Bond Dissociation Enthalpies of the
C-H Bonds Adjacent to Radical Centers. J. Org. Chem. 1998, 63, 1872–
1877.
(12) West, J., Huang, D.; Sorensen, E. J. Acceptorless
dehydrogenation of small molecules through cooperative base metal
catalysis. Nat. Commun. 2015, 6, 10093.
measurements, and Zhidong Song, Jinjian Liu, Tom Schang,
Devin Wood, and Maria Congenie for experimental
assistance. We thank one reviewer for their feedback on the
nature of the cobalt hydride intermediate.
1
2
3
4
5
6
7
8
REFERENCES
(13) (a) Schrauzer, G. N., Windgassen, R. J.; Kohnle, J. Die
Konstitution von Vitamin B12s. Chem. Ber. 1965, 98, 3324–3333. (b)
Estes, D. P.; Grills, D. C.; Norton, J. R. The Reaction of Cobaloximes
with Hydrogen: Products and Thermodynamics. J. Am. Chem. Soc.
2014, 136, 17362–17365. Recent work has called into question the
true nature of Co(III)–H species. It is likely that Co(III)–H in our system
exists as a Co(I) with a protonated ligand. For an example that
discusses the nature of Co(III)–H species: (c) Lacy, D. C.; Roberts, G.
M.; Peters, J. C. The Cobalt Hydride that Never Was: Revisiting
Schrauzer’s “Hydridocobaloxime”. J. Am. Chem. Soc. 2015, 137, 4860–
4864. (d) Chalkley, M. J.; Oyala, P. H.; Peters, J. C. Cp* Noninnocence
Leads to a Remarkably Weak C–H Bond via Metallocene Protonation.
J. Am. Chem. Soc. 2019, 141, 4721–4729.
(14) Tarantino, K. T.; Miller, D. C.; Callon, T. A.; Knowles, R. R. Bond-
Weakening Catalysis: Conjugate Aminations Enabled by the Soft
Homolysis of Strong N–H Bonds. J. Am. Chem. Soc. 2015, 137, 6440–
6443.
(15) (a) Kablaoui, N. M.; Buchwald, S. L. Development of a Method
for the Reductive Cyclization of Enones by a Titanium Catalyst. J. Am.
Chem. Soc. 1996, 118, 3182–3191. (b) Streuff, J.; Feurer, M.; Bichovski,
P.; Frey, G.; Gellrich, U. Enantioselective Titanium(III)-Catalyzed
Reductive Cyclization of Ketonitriles. Angew. Chem. Int. Ed. 2012, 51,
8661–8664.
(16) For representative reviews, see: (a) Morcillo, S. P.; Miguel, D.;
Campaña, A. G.; Álvarez de Cienfuegos, L.; Justicia, J.; Cuerva, J. M.
Recent applications of Cp2TiCl in natural product synthesis. Org.
Chem. Front. 2014, 1, 15–33. (b) Beaumier, E. P.; Pearce, A. J.; See, X.
Y.; Tonks, I. A. Modern Applications of Low-Valent Early Transition
Metals in Synthesis and Catalysis. Nat. Rev. Chem. 2019, 3, 15–34. (c)
Streuff, J. Reductive Umpolung Reactions with Low-Valent Titanium
Catalysts. Chem. Rec. 2014, 14, 1100–1113.
(17) For reviews, see: (a) Pattenden, G. Cobalt-mediated Radical
Reactions in Organic Synthesis. Chem. Soc. Rev. 1988, 17, 361–382.
(b) Crossley, S. W. M., Martinez, R. M., Obradors, C.; Shenvi, R. A. Mn-,
Fe, and Co-Catalyzed Radical Hydrofunctionalizations of Olefins.
Chem. Rev. 2016, 116, 8912–9000. For representative examples, see:
(c) Branchaud, B. P., Meier, M. S.; Choi, Y. Alkyl-Alkenyl Cross Coupling
Via Alkyl Cobaloxime Radical Chemistry. Equivalent to the Heck
Reaction Compatible with Common Organic Functional Groups.
Tetrahedron Lett. 1988, 29, 167–170. (d) Weiss, M. E., Kreis, L. M.,
Lauber, A.; Carreira, E. M. Cobalt-Catalyzed Coupling of Alkyl Iodides
with Alkenes: Deprotonation of Hydridocobalt Enables Turnover.
Angew. Chem. Int. Ed. 2011, 50, 11125–11128. (e) Crossley, S. W. M.
Barabé, F.; Shenvi, R. A. Simple, Chemoselective, Catalytic Olefin
Isomerization. J. Am. Chem. Soc. 2014, 136, 16788–16791. (f) Yi, H.;
Niu, L.; Song, C.; Li, Y.; Dou, B.; Singh, A. K.; Lei, A. Photocatalytic
Dehydrogenative Cross-Coupling of Alkenes with Alcohols or Azoles
without External Oxidant. Angew. Chem. Int. Ed. 2017, 56, 1120–1124.
(1) Aziridines and Epoxides in Organic Synthesis; Yudin, A., Ed.;
Wiley-VCH: Weinheim, 2006.
(2) Jacobsen, E. N. Asymmetric Catalysis of Epoxide Ring-Opening
Reactions. Acc. Chem. Res. 2000, 33, 421–431.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) (a) Nielsen, D. K.; Doyle, A. G. Nickel-Catalyzed Cross Coupling
of Styrenyl Epoxides with Boronic Acids. Angew. Chem. Int. Ed. 2011,
50, 6056–6059. (b) Zhao, Y.; Weix, D. J. Nickel-Catalyzed
Regiodivergent Opening of Epoxides with Aryl Halides: Co-Catalysis
Controls Regioselectivity. J. Am. Chem. Soc. 2014, 136, 48–51. (c)
Zhao, Y.; Weix, D. J. Enantioselective Cross-Coupling of meso-
Epoxides with Aryl Halides. J. Am. Chem. Soc. 2015, 137, 3237−3240.
(d) Teng, S.; Tessensohn, M. E.; Webster, R. D.; Zhou, J. S. Palladium-
Catalyzed Intermolecular Heck-Type Reaction of Epoxides. ACS Catal.
2018, 8, 7439–7444.
(4) For a review, see: Magnus, A.; Bertilsson, S. K.; Andersson, P. G.
Asymmetric base-mediated epoxide isomerisation. Chem. Soc. Rev.
2002, 31, 223–229.
(5) (a) Cope, A. C.; Lee, H.-H.; Petree, H. E. Proximity Effects. XII.
Reaction of cis- and trans-Cycloöctene Oxide with Bases. J. Am.
Chem. Soc. 1958, 80, 2849–2852. (b) Ramírez, A.; Collum, D. B. Hemi-
Labile Ligands in Organolithium Chemistry:ꢀ Rate Studies of the LDA-
Mediated α- and β-Metalations of Epoxides. J. Am. Chem. Soc. 1999,
121, 11114–11121.
(6) Lumbroso, A.; Cooke, M. L.; Breit, B. Catalytic Asymmetric
Synthesis of Allylic Alcohols and Derivatives and their Applications in
Organic Synthesis. Angew. Chem. Int. Ed. 2013, 52, 1890–1932.
(7) (a) Gansäuer, A., Rinker, B., Pierobon, M., Grimme, S.
Gerenkamp, M.; Mück-Lichtenfeld, C. A Radical Tandem Reaction
with Homolytic Cleavage of a Ti-O Bond. Angew. Chem. Int. Ed. 2003,
42, 3687–3690. (b) Gansäuer, A.; Hildebrandt, S.; Vogelsanga, E.;
Flowers II, R. A. Tuning the redox properties of the titanocene(III)/(IV)-
couple for atom-economical catalysis in single electron steps. Dalton
Trans. 2016, 45, 448–452.
(8) Hao, W., Wu, X., Sun, J. Z., Siu, J. C., MacMillan, S. N.; Lin, S.
Radical Redox-Relay Catalysis: Formal [3+2] Cycloaddition of N-
Acylaziridines and Alkenes. J. Am. Chem. Soc. 2017, 139, 12141–
12144.
(9) Hao, W., Harenberg, J. H., Wu, X., MacMillan, S. N.; Lin, S.
Diastereo- and Enantioselective Formal [3+2] Cycloaddition of
Cyclopropyl Ketones and Alkenes via Ti-Catalyzed Radical Redox
Relay. J. Am. Chem. Soc. 2018, 140, 3514–3517.
(10) (a) Nugent, W. A.; RajanBabu, T. V. Transition-Metal-Centered
Radicals in Organic Synthesis. Titanium(III)-Induced Cyclization of
Epoxyolefins. J. Am. Chem. Soc. 1988, 110, 8561–8562. (b) RajanBabu,
T. V.; Nugent, W. A. Selective Generation of Free Radicals from
Epoxides Using a Transition-Metal Radical. A Powerful New Tool for
Organic Synthesis. J. Am. Chem. Soc. 1994, 116, 986–997. (c)
Gansäuer, A., Bluhm, H.; Pierobon, M. Emergence of a Novel Catalytic
Radical Reaction: Titanocene-Catalyzed Reductive Opening of
Epoxides. J. Am. Chem. Soc. 1998, 120, 12849–12859. (d) Gansäuer,
A., Barchuk, A., Keller, F., Schmitt, M., Grimme, S., Gerenkamp, M.,
Mück-Lichtenfeld, C., Daasbjerg, K.; Svith, H. Mechanism of
Titanocene-Mediated Epoxide Opening through Homolytic
Substitution. J. Am. Chem. Soc. 2007, 129, 1359–1371. (e) Zhang, Z.;
Richrath, R. B.; Gansäuer, A. Merging Catalysis in Single Electron Steps
with Photoredox Catalysis—Efficient and Sustainable Radical
Chemistry. ACS Catal. 2019, 9, 32083212.
(g)
Sun, X., Chen, J.; Ritter, T. Catalytic dehydrogenative
decarboxyolefination of carboxylic acids. Nat. Chem. 2018, 10, 1229–
1233.
(18) (a) Su, H.; Walder, L.; Zhang, Z. D.; Scheffold, R. Asymmetric
Catalysis by Vitamin-B12 - The Isomierisation of Achiral Epoxides to
Optically-Active Allylic Alcohols. Helv. Chim. Acta 1988, 71, 1073-
1078. (b) Bonhôte, P.; Scheffold, R. Asymmetric Catalysis by Vitamin
B12. The Mechanism of the Cob(I)alamin-Catalyzed Isomerization of
1,2-Epoxycyclopentane to (R)-Cyclopent-2-enol. Helv. Chim. Acta
1991, 74, 1425–1444. (c) Harrowven, D. C.; Pattenden, G. Cobalt
Mediated Cyclisations of Epoxy Olefins. Tetrahedron Lett. 1991, 32,
ACS Paragon Plus Environment