10.1002/anie.201912119
Angewandte Chemie International Edition
COMMUNICATION
[11] a) W. Dmowski, T. Kozłowski, Electrochim. Acta 1997, 42, 513–523; b)
J. H. H. Meurs, W. Eilenberg, Tetrahedron, 1991, 47, 705-714
[12] G. S. Lal, J. Org. Chem., 1993, 58, 2791 – 2796.
In summary, an electrochemical vicinal 1,2-difluorination of
alkenes has been described, using a simple and user-friendly 2-
electrode setup with nucleophilic fluoride and iodotoluene as a
mediator. Moderate to excellent yields of fluorinated products are
demonstrated in a wide substrate scope. The ‘ex-cell’ method
allows access to new substrate classes that have otherwise
remained unattainable, including electron rich moieties, anilines
and substituted internal alkenes. The method is sustainable
(lower E-factor), safe, and high-yielding gram and decagram
scale reactions demonstrate the practicality of the process. We
therefore expect this method to facilitate access to this important
motif in a wider variety of compounds and contexts.
[13]
S. Hara, J. Nakahigashi, K. Ishi-i, M. Sawaguchi, H. Sakai, T. Fukuhara,
N. Yoneda, Synlett 1998, 495–496.
[14] Hypervalent iodine reagents have been used for a variety of fluorination
reactions. For an excellent review of this chemistry, see: S. V. Kohlhepp,
T. Gulder, Chem. Soc. Rev. 2016, 45, 6270–6288.
[15] a) J. C. Sarie, C. Thiehoff, R. J. Mudd, C. G. Daniliuc, G. Kehr, R. Gilmour,
J. Org. Chem. 2017, 82, 11792–11798; b) H. Sun, B. Wang, S. G.
DiMagno, Org. Lett. 2008, 10, 4413–4416.
[16] a) I. G. Molnár, R. Gilmour, J. Am. Chem. Soc. 2016, 138, 5004–5007;
b) F. Scheidt, M. Schäfer, J. C. Sarie, C. G. Daniliuc, J. J. Molloy, R.
Gilmour, Angew. Chem. Int. Ed. 2018, 57, 16431–16435.
[17] a) S. M. Banik, J. W. Medley, E. N. Jacobsen, J. Am. Chem. Soc. 2016,
138, 5000–5003; b) K.M. Haj.; S. M. Banik; E. N. Jacobsen, Org. Lett.
2019, 21, 4919–4923.
Acknowledgements
[18] R. Francke, R. D. Little, Chem. Soc. Rev. 2014, 43, 2492.
[19] Selected reviews: a) J.-I. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki,
Chem. Rev. 2008, 108, 2265–2299 b) M. Yan, Y. Kawamata, P. S. Baran,
Chem. Rev. 2017, 117, 13230–13319; c) S. Möhle, M. Zirbes, E. Rodrigo,
T. Gieshoff, A. Wiebe, S. R. Waldvogel, Angew. Chem. Int. Ed. 2018, 57,
6018–6041; d) A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S.
R. Waldvogel, Angew. Chem. Int. Ed. 2018, 57, 5594–5619.
The authors would like to thank the Royal Society (University
Research Fellowship and Enhancement Award to AJJL) and
EPSRC (EP/G036764/1) for funding, Dr Lam (University of
Greenwich) for the PTFE ElectraSyn vial and Dawn White
(University of Bristol) for cyclopropyl substrate, 2t.
[20] G. G. Botte, Electrochem. Soc. Interface 2014, Fall, 49–55.
[21] a) E. J. Horn, B. R. Rosen, P. S. Baran, ACS Cent. Sci. 2016, 2, 302–
308; b) B. A. Frontana-Uribe, R. D. Little, J. G. Ibanez, A. A. Palma, R.
Vasquez-Medrano, Green Chem. 2010, 12, 2099–2119.
Keywords: Electrochemistry • Fluorination • Hypervalent iodine
• Green Chemistry • Oxidation
[22] Selected examples: a) D. Kajiyama, K. Inoue, Y. Ishikawa, S. Nishiyama,
Tetrahedron 2010, 66, 9779–9784; b) D. Kajiyama, T. Saitoh, S.
Nishiyama, Electrochemistry 2013, 81, 319–324; c) T. Broese, R.
Francke, Org. Lett. 2016, 18, 5896–5899; d) O. Koleda, T. Broese, J.
Noetzel, M. Roemelt, E. Suna, R. Francke, J. Org. Chem. 2017, 82,
11669–11681; e) R. Möckel, E. Babaoglu, G. Hilt, Chem. Eur. J. 2018,
24, 15781–15785; f) M. Elsherbini, T. Wirth, Chem. Eur. J. 2018, 24,
13399–13407; g) R. Francke, T. Broese, A. F. Roesel, in PATAI’S Chem.
Funct. Groups, John Wiley & Sons, Ltd, Chichester, UK, 2018, pp. 1–22;
h) W.-C. Gao, Z.-Y. Xiong, S. Pirhaghani, T. Wirth, Synthesis (Stuttg).
2019, 51, 276–284; i) R. Francke, Curr. Opin. Electrochem. 2019, 15,
83–88. For a review, see: j) K. Liu, C. Song, A. Lei Org. Biomol. Chem.,
2018, 16, 2375.
[1]
J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E.
Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014,
114, 2432–2506.
[2]
[3]
N. A. McGrath, M. Brichacek, J. T. Njardarson, J. Chem. Educ. 2010, 87,
1348–1349.
a) Q. A. Huchet, B. Kuhn, B. Wagner, N. A. Kratochwil, H. Fischer, M.
Kansy, D. Zimmerli, E. M. Carreira, K. Müller, J. Med. Chem. 2015, 58,
9041–9060; b) E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N.
A. Meanwell, J. Med. Chem. 2015, 58, 8315–8359.
[4]
[5]
M. Morgenthaler, E. Schweizer, A. Hoffmann-Röder, F. Benini, R. E.
Martin, G. Jaeschke, B. Wagner, H. Fischer, S. Bendels, D. Zimmerli, et
al., ChemMedChem 2007, 2, 1100–1115.
a) I. G. Molnár, C. Thiehoff, M. C. Holland, R. Gilmour, ACS Catal. 2016,
6, 7167–7173; b) N. Erdeljac, G. Kehr, M. Ahlqvist, L. Knerr, R. Gilmour,
Chem. Commun. 2018, 54, 12002–12005; c) Erdeljac, K. Bussmann, A.
Schöler, F. K. Hansen, R. Gilmour, ACS Med. Chem. Lett. 2019,
acsmedchemlett.9b00287.
[23] a) T. Sawamura, S. Kuribayashi, S. Inagi, T. Fuchigami, Org. Lett. 2010,
12, 644–646; b) T. Sawamura, S. Kuribayashi, S. Inagi, T. Fuchigami,
Adv. Synth. Catal. 2010, 352, 2757–2760; c) S. Hara, T. Hatakeyama,
S.-Q. Chen, K. Ishi-i, M. Yoshida, M. Sawaguchi, T. Fukuhara, N. Yoneda,
J. Fluor. Chem. 1998, 87, 189–192; d) T. Fuchigami, T. Fujita, J. Org.
Chem. 1994, 59, 7190–7192; e) J. D. Haupt, M. Berger, S. R. Waldvogel,
Org. Lett. 2019, 21, 242–245; f) H. Schmidt, H. Meinert, Angew. Chem.,
1960, 72, 109-110.
[6]
a) Wolfe, Acc. Chem. Res. 1972, 5, 102–111; b) D. O’hagan, H. S. Rzepa,
M. Schüler, A. M. Z. Slawin, Beilstein J. Org. Chem. 2006, 2,
10.1186/1860-5397-2-19; c) D. O’Hagan, Chem. Soc. Rev. 2008, 37,
308–319; d) C. Thiehoff, Y. P. Rey, R. Gilmour, Isr. J. Chem. 2017, 57,
92–100; e) L. Goodman, H. Gu, V. Pophristic, J. Phys. Chem. A 2005,
109, 1223–1229.
[24] ArIF2 species can be prepared using Selectfluor, see 15a and C. Ye, B.
Twamley, J. M. Shreeve, Org. Lett., 2005, 7, 3961 – 3964.
[25] T. Fuchigami, S. Inagi, Chem. Commun. 2011, 47, 10211–10223.
[26] See SI for details.
[7]
[8]
L. E. Zimmer, C. Sparr, R. Gilmour, Angew. Chem. Int. Ed. 2011, 50,
11860–11871.
[27] a) H. K. Minhas, W. Riley, A. M. Stuart, M. Urbonaite, Org. Biomol. Chem.
2018, 16, 7170–7173; b) J. C. Sarie, J. Neufeld, C. G. Daniliuc, R.
Gilmour, ACS Catal. 2019, acscatal.9b02313; c) A. M. Arnold, A. Pöthig,
M. Drees, T. Gulder, J. Am. Chem. Soc. 2018, 140, 4344−4353.
[28] a) B. Elsler, A. Wiebe, D. Schollmeyer, K. M. Dyballa, R. Franke, S. R.
Waldvogel, Chem. Eur. J. 2015, 21, 12321–12325; b) Y. Imada, J. L.
Röckl, A. Wiebe, T. Gieshoff, D. Schollmeyer, K. Chiba, R. Franke, S. R.
Waldvogel, Angew. Chem. Int. Ed. 2018, 57, 12136–12140.
a) I. Molnár, M. Holland, C. Daniliuc, K. Houk, R. Gilmour, Synlett 2016,
27, 1051–1055; b) M. Aufiero, R. Gilmour, Acc. Chem. Res. 2018, 51,
1701–1710; c) A. Vega-Peñaloza, S. Paria, M. Bonchio, L. Dell’Amico, X.
Companyó, ACS Catal. 2019, 9, 6058–6072.
[9]
a) M. Schüler, D. O’Hagan, A. M. Z. Slawin, Chem. Commun. 2005,
4324; b) I. Yamamoto, M. J. T. Jordan, N. Gavande, M. R. Doddareddy,
M. Chebib, L. Hunter, Chem. Commun 2012, 48, 829–831; c) X.-G. Hu,
D. S. Thomas, R. Griffith, L. Hunter, Angew. Chem. 2014, 126, 6290–
6293.
[29] This is consistent with: I. Colomer, C. Batchelor-McAuley, B. Odell, T. J.
Donohoe, R. G. Compton, J. Am. Chem. Soc. 2016, 138, 8855–8861.
[30] a) S. M. Banik, K. M. Mennie, E. N. Jacobsen, J. Am. Chem. Soc. 2017,
139, 9152–9155; b) N. O. Ilchenko, M. Hedberg, K. J. Szabó, Chem. Sci.
2017, 8, 1056–1061.
[10] a) A. E. Feiring, S. Rozen, E. R. Wonchoba, J. Fluor. Chem. 1998, 89,
31–34; b) M. A. Tius, Tetrahedron 1995, 51, 6605–6634.
This article is protected by copyright. All rights reserved.