J. G. Cumming et al. / Bioorg. Med. Chem. Lett. 22 (2012) 3895–3899
3899
primary alcohol 11. Dess–Martin oxidation of 11 gave an aldehyde
References and notes
which was coupled with 10 in a reductive amination. Removal of
the Boc group with trifluoroacetic acid paved the way for alkyl-
ation of the terminal nitrogen to give compounds 2, 3 and 4. For
compounds 5 having piperazine as the terminal ring, the nitrogen
proximal to the methylene was first protected as the benzyl carba-
mate (Cbz) (X = NCO2Bn in 11). Removal of the Boc in step (e) re-
quired a change from TFA to HCl to avoid unwanted cleavage of
the Cbz. The Cbz was removed in the final step using palladium
catalysed hydrogenation of the hydrochloride salt of the starting
material in the presence of zinc bromide which avoided hydrogen-
olysis of the aryl halogen atoms on the left hand side Ar group.15
The sequence of steps could also be reversed so that the final step
was the reaction of a phenyl isocyanate with an advanced interme-
diate which already contained the N-alkyl substituent on the ter-
minal piperidine, morpholine or piperazine ring.9
1. For a recent review of MCP-1 see: Deshmane, S. L.; Kremlev, S.; Amini, S.;
Sawaya, B. E. J. Inteferon Cytokine Res. 2009, 29, 313.
2. Charo, I. F.; Myers, S. J.; Herman, A.; Franci, C.; Connolly, A. J.; Coughlin, S. R.
Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 2752.
3. For recent reviews of CCR2 antagonists see: (a) Struthers, M.; Pasternak, A. Curr.
Top. Med. Chem. 2010, 10, 1278; (b) Xia, M.; Sui, Z. Expert Opin. Ther. Patents
2009, 19, 295.
4. (a) Yang, M. G.; Xiao, Z.; Shi, Q.; Cherney, R. J.; Tebben, A. J.; De Lucca, G. V.;
Santella, J. B.; Mo, R.; Cvijic, M. E.; Zhao, Q.; Barrish, J. C.; Carter, P. H. Bioorg.
Med. Chem. Lett. 2012, 22, 1384; (b) Wang, G. Z.; Haile, P. A.; Daniel, T.; Belot, B.;
Viet, A. Q.; Goodman, K. B.; Sha, D.; Dowdell, S. E.; Varga, N.; Hong, X.;
Chakravorty, S.; Webb, C.; Cornejo, C.; Olzinski, A.; Bernard, R.; Evans, C.;
Emmons, A.; Briand, J.; Chung, C.; Quek, R.; Lee, D.; Gough, P. J.; Sehon, C. A.
Bioorg. Med. Chem. Lett. 2011, 21, 7291; (c) Trujillo, J. I.; Huang, W.; Hughes, R.
O.; Joseph Rogier, D.; Turner, S. R.; Devraj, R.; Morton, P. A.; Xue, C.; Chao, G.;
Covington, M. B.; Newton, R. C.; Metcalf, B. Bioorg. Med. Chem. Lett. 1827, 2011,
21; (d) Pasternak, A.; Goble, S. D.; Doss, G. A.; Tsou, N. N.; Butora, G.; Vicario, P.
P.; Ayala, J. M.; Struthers, M.; Demartino, J. A.; Mills, S. G.; Yang, L. Bioorg. Med.
Chem. Lett. 2008, 18, 1374.
The synthesis of compounds 6–9 containing the carbonyl linker
followed a similar strategy and is illustrated for compounds 8 in
Scheme 2. Starting from the mono-Boc-protected homochiral
piperazine carboxylic acid 12, N-alkylation was followed by amide
coupling to piperazine using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-
4-methyl-morpholinium chloride (DMTMM)16 and N-methyl mor-
pholine avoiding unwanted cleavage of the Boc protecting group.
The aryl urea was installed by reaction with either a phenyl isocy-
anate or an N-aryl phenyl carbamate. Finally, removal of the Boc
group resulted in compounds 8.
In summary, testing of a ‘GPCR ligand motif’ library resulted in
screening hit 1. Exploration of SAR led to the identification of a no-
vel, potent and selective series of N-aryl piperazine-1-carboxamide
CCR2 antagonists with good DMPK properties but unacceptable
hERG margin. Changes to the series scaffold increased ligand lipo-
philicity efficiency and serendipitously led to a compound, 8c,
which had low nanomolar activity at CCR2 and a 10,000-fold mar-
gin to hERG ion channel inhibition. Further studies on this series of
CCR2 antagonists will be communicated in due course.
5. (a) Lanter, J. C.; Markotan, T. P.; Zhang, X.; Subasinghe, N.; Kang, F.; Hou, C.;
Singer, M.; Opas, E.; McKenney, S.; Crysler, C.; Johnson, D.; Molloy, C. J.; Sui, Z.
Bioorg. Med. Chem. Lett. 2011, 21, 7496; (b) Xue, C.; Wang, A.; Han, Q.; Zhang, Y.;
Cao, G.; Feng, H.; Huang, T.; Zheng, C.; Xia, M.; Zhang, K.; Kong, L.; Glenn, J.;
Anand, R.; Meloni, D.; Robinson, D. J.; Shao, L.; Storace, L.; Li, M.; Hughes, R. O.;
Devraj, R.; Morton, P. A.; Rogier, D. J.; Covington, M.; Scherle, P.; Diamond, S.;
Emm, T.; Yeleswaram, S.; Contel, N.; Vaddi, K.; Newton, R.; Hollis, G.; Metcalf, B.
ACS Med. Chem. Lett. 2011, 2, 913; (c) Zhang, X.; Hufnagel, H.; Hou, C.; Opas, E.;
McKenney, S.; Crysler, C.; O’Neill, J.; Johnson, D.; Sui, Z. Bioorg. Med. Chem. Lett.
2011, 21, 6042; (d) Zhang, X.; Hufnagel, H.; Markotan, T.; Lanter, J.; Cia, C.; Hou,
C.; Singer, M.; Opas, E.; McKenney, S.; Crysler, C.; Johnson, D.; Sui, Z. Bioorg.
Med. Chem. Lett. 2011, 21, 5577; (e) Xue, C.; Feng, H.; Cao, G.; Huang, T.; Glenn,
J.; Anand, R.; Meloni, D.; Zhang, K.; Kong, L.; Wang, A.; Zhang, Y.; Zheng, C.; Xia,
M.; Chen, L.; Tanaka, H.; Han, Q.; Robinson, D. J.; Modi, D.; Storace, L.; Shao, L.;
Sharief, V.; Li, M.; Galya, L. G.; Covington, M.; Scherle, P.; Diamond, S.; Emm, T.;
Yeleswaram, S.; Contel, N.; Vaddi, K.; Newton, R.; Hollis, G.; Friedman, S.;
Metcalf, B. ACS Med. Chem. Lett. 2011, 2, 450; (f) Hughes, R. O.; Rogier, D. J.;
Devraj, R.; Zheng, C.; Cao, G.; Feng, H.; Xia, M.; Anand, R.; Xing, L.; Glenn, J.;
Zhang, K.; Covington, M.; Morton, P. A.; Hutzler, J. M.; Davis, J. W., II; Scherle, P.;
Baribaud, F.; Bahinski, A.; Mo, Z.; Newton, R.; Metcalf, B.; Xue, C. Bioorg. Med.
Chem. Lett. 2011, 21, 2626; (g) Xue, C.; Wang, A.; Meloni, D.; Zhang, K.; Kong, L.;
Feng, H.; Glenn, J.; Huang, T.; Zhang, Y.; Cao, G.; Anand, R.; Zheng, C.; Xia, M.;
Han, Q.; Robinson, D. J.; Storace, L.; Shao, L.; Li, M.; Brodmerkel, C. M.;
Covington, M.; Scherle, P.; Diamond, S.; Yeleswaram, S.; Vaddi, K.; Newton, R.;
Hollis, G.; Friedman, S.; Metcalf, B. Bioorg. Med. Chem. Lett. 2010, 20, 7473.
6. (a) Kang, Y. S.; Cha, J. J.; Hyun, Y. Y.; Cha, D. R. Expert Opin. Investig. Drugs 2011,
20, 745; (b) Sayyed, S. G.; Ryu, M.; Kulkarni, O. P.; Schmid, H.; Lichtnekert, J.;
Gruner, S.; Green, L.; Mattei, P.; Hartmann, G.; Anders, H. Kidney Int. 2011, 80,
68.
Acknowledgements
The authors would like to thank our colleagues John Shaw, Lucy
Ashman, Susan Mellor and Lorraine Newboult for developing and
carrying out the biological assays, and Martin Wild, Kerry Frost,
Warren Keene and Victoria Starkey for providing the DMPK data.
We also thank Mirek Tomaszewski and Jin Hu (AstraZeneca,
Montréal) for the design and synthesis of the GPCR library which
contained the initial screening hit 1.
7. (a) Serrano, A.; Paré, M.; McIntosh, F.; Elmes, S. J. R.; Martino, G.; Jomphe, C.;
Lessard, E.; Lembo, P. M. C.; Vaillancourt, F.; Perkins, M. N.; Cao, C. Q. Mol. Pain
2010, 6, 90; (b) Abbadie, C.; Bhangoo, S.; De Koninck, Y.; Malcangio, M.; Melik-
Parsadaniantz, S.; White, F. A. Brain Res. Rev. 2009, 60, 125.
8. Belvisi, M. G.; Hele, D. J.; Birrell, M. A. Expert Opin. Ther. Target 2004, 8, 265.
9. Bower, J. F.; Poyser, J. P.; Turner, P.; Waterson, D.; Winter, J. WO 2006067401.
10. For experimental procedures see Ref. 9
11. Springthorpe, B.; Strandlund, G. WO 2005037052, 2005; Chem. Abstr. 2005, 142,
426388.
12. Jamieson, C.; Moir, E. M.; Rankovic, Z.; Wishart, G. J. Med. Chem. 2006, 49, 5029.
13. Based on matched molecular pair analysis of values calculated with ClogP and
Supplementary data
AZlogD, an in-house QSAR model of logD7.4
14. Seglan, P. O. Methods Cell Biol. 1976, 13, 29.
.
Supplementary data associated with this article can be found, in
118. These data include MOL files and InChiKeys of the most
important compounds described in this article.
15. (a) Wu, G.; Tormos, W. J. Org. Chem. 1997, 62, 6412; (b) Wu, G.; Huang, M.;
Richards, M.; Poirier, M.; Wen, X.; Draper, R. W. Synthesis 2003, 1657.
16. Kunishima, M.; Kawachi, C.; Morita, J.; Terao, K.; Iwasaki, F.; Tani, S.
Tetrahedron 1999, 55, 13159.