monosaccharides were reported over 30 years ago,11 only
now the potential of carbohydrates in asymmetric synth-
esis is broadly exploited.12 We have developed carbohy-
drate bis(oxazolines) that gave excellent results in copper-
catalyzed reactions.13,14 The design of novel olefin hybrid
ligands based on carbohydrates is attractive, as unsatu-
rated monosaccharide derivatives are easily available and
phosphorus donor sites can be conveniently incor-
porated into the pyranoside framework by phosphinite
formation.11,15 Starting from commerically available glu-
cal 1, we recently prepared new olefinÀphosphinite hybrid
EtO-gluco-enoPhos (3a) which gave the (R)-configured
1,4-addition product of cyclohexenone with phenylboro-
nic acid.16,17 After this initial success, we aimed for both a
broad application of the new ligand and a possibility to
obtain enantiomeric addition products.
1 and 5). Thus, the anomeric substituent is not essential for
an efficient asymmetric induction.
To access the (S)-enantiomers of the 1,4-addition pro-
ducts 8aa and 8ba, the enantiomeric ligands to 3a,b are
necessary, which poses a considerable obstacle, as L-glu-
cose derivatives are prohibitively expensive and therefore
not an option for ligand synthesis. As D- and L-arabinose
are available at reasonable price, we explored an olefin
phosphinite ligand based on this monosaccharide. Unfor-
tunately, this ligand led to the formation of product 8aa in
76% ee and 92% yield,16b which made arabinose unsui-
table for the preparation of an enantiomeric hybrid ligand
pair.
To explore the influence of the anomeric substituent on
stereoselectivity, simplified ligand H-gluco-enoPhos (3b)
was prepared via a Ferrier rearrangement18 with tri-
ethylsilane19 (Scheme 1). First trials of 3b in 1,4-additions
with phenyboronic acid (7a) and cyclohexenone 6a or
cyclopentenone 6b gave >90% yield of the (R)-configured
products 8aa and 8ba in 98% ee and 99% ee, respectively.
These results were almost identical to those obtained with
EtO-gluco-enoPhos (3a) (Table 1, entries 2 and 6 vs entries
Figure 1. D-gluco- and D-galacto-configured carbohydrate scaf-
folds as pseudo-enantiomers.
(9) Selected examples for diolefins: (a) Otomaru, Y.; Okamoto, K.;
Shintani, R.; Hayashi, T. J. Org. Chem. 2005, 70, 2503. (b) Helbig, S.;
Sauer, S.; Cramer, N.; Laschat, S.; Baro, A.; Frey, W. Adv. Synth. Catal.
2007, 349, 2331. (c) Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-Q.
J. Am. Chem. Soc. 2007, 129, 5336. (d) Okamoto, K.; Hayashi, T.;
Rawal, V. H. Org. Lett. 2008, 10, 4387. (e) Nishimura, T.; Nagaosa, M.;
Hayashi, T. Chem. Lett. 2008, 37, 860. (f) Hu, X.; Zhuang, M.; Du, H.
Org. Lett. 2009, 11, 4744. (g) Li, Q.; Dong, Z.; Yu, Z.-X. Org. Lett. 2011,
13, 1122. (h) Trost, B. M.; Burns, A. C.; Tautz, T. Org. Lett. 2011, 13,
4566.
The application of a pseudo-enantiomeric carbohydrate
scaffold is an option to avoid ligand syntheses from
expensive L-carbohydrates. This strategy has been success-
fully employed by Kunz and RajanBabu for chiral carbo-
hydrate auxiliaries20 and ligands.21 The synthesis of such
pseudo-enantiomeric ligands uses diastereomeric com-
pounds as starting materials.22 Elegant and attractive as
this approach is, the development of an efficient pseudo-
enantiomeric ligand is by no means a trivial feat. The
challenge lies in finding a carbohydrate scaffold which
reverses the asymmetric induction and does this with the
same high level of enantioselectivity as the original ligand.
Therefore, the development of pseudo-enantiomers is a
processof trial and error, justasany designofa newligand,
and not necessarily successful. We decided to explore D-
galactose, the C4-epimer of D-glucose (Figure 1), as a
candidate for the preparation of pseudo-enantiomeric
olefin hybrid ligands.
ꢀ
(10) Selected examples for olefinÀphosphine hybrids: (a) Kasak, P.;
Arion, V. B.; Widhalm, M. Tetrahedron: Asymmetry 2006, 17, 3084. (b)
~
Stremmler, R. T.; Bolm, C. Synlett 2007, 1365. (c) Mariz, R.; Briceno,
A.; Dorta, R.; Dorta, R. Organometallics 2008, 27, 6605.
(11) (a) Cullen, W. R.; Sugi, Y. Tetrahedron Lett. 1978, 19, 1635. (b)
Jackson, R.; Thompson, D. J. J. Organomet. Chem. 1978, 159, C29. (c)
Selke, R. React. Kinet. Catal. Lett. 1979, 10, 135. (d) Sinou, D.; Descotes,
G. React. Kinet. Catal. Lett. 1980, 14, 463.
€
€
(12) For reviews, see: (a) Lehnert, T.; Ozuduru, G.; Grugel, H.;
Albrecht, F.; Telligmann, S. M.; Boysen, M. M. K. Synthesis 2011, 2685.
ꢀ
ꢁ
(b) Woodward, S.; Dieguez, M.; Pamies, O. Coord. Chem. Rev. 2010,
254, 2007. (c) Benessere, V.; Del Litto, R.; De Roma, A.; Ruffo, F.
Coord. Chem. Rev. 2010, 254, 390. (d) Boysen, M. M. K. Chem.;Eur. J.
ꢀ
ꢁ
2007, 13, 8648. (e) Dieguez, M.; Pamies, O.; Claver, C. Chem. Rev. 2004,
104, 3189. (f) Hale, K. J. In Second Supplement to the Second ed. of
Rodd’s Chemistry of Carbon Compounds; Sainsbury, M., Ed.; Elsevier:
Amsterdam, 1993; Vol. 1E/F/G, Chapter 23b, p 273.
The synthesis of galacto-configured olefinÀphosphinite
ligands from commercially available D-galactal 4(Scheme 2)
was done analogous to the preparation of the gluco-
ligands. The Ferrier rearrangement of 4 with alcohols
leads to notoriously unsatisfactory yields;23 therefore,
(13) (a) Irmak, M.; Groschner, A.; Boysen, M. M. K. Chem. Com-
mun. 2007, 177. (b) Minuth, T.; Irmak, M.; Groschner, A.; Lehnert, T.;
Boysen, M. M. K. Eur. J. Org. Chem. 2009, 997.
(14) Irmak, M.; Boysen, M. M. K. Adv. Synth. Catal. 2008, 350, 403.
(15) Yonehara, K.; Hashizume, T.; Mori, K.; Ohe, K.; Uemura, S.
J. Org. Chem. 1999, 64, 5593.
(16) (a) Minuth, T.; Boysen, M. M. K. Org. Lett. 2009, 11, 4212. (b)
Grugel, H.; Minuth, T.; Boysen, M. M. K. Synthesis 2010, 3248.
(17) Bidentate coordination of 5a to Rh(I) was unequivocally estab-
lished by 1H and 31P NMR spectroscopy (ref 16a). The data are in good
agreement with those reported for an achiral allyl phosphinite: Curtis,
J. L. S.; Hartwell, G. E. J. Organomet. Chem. 1974, 80, 119.
(18) (a) Ferrier, R. J.; Overend, W. G.; Ryan, A. E. J. Chem. Soc.
1962, 3667. (b) Ferrier, R. J.; Prasad, N. J. Chem. Soc. C 1969, 570.
(19) (a) Nicolaou, K. C.; Hwang, C.-K.; Marron, B. E.; DeFrees,
S. A.; Couladouros, E. A.; Abe, Y.; Carroll, P. J.; Snyder, J. P. J. Am.
Chem. Soc. 1990, 112, 3040. (b) Takahashi, K.; Masumura, T.; Ishihara,
J.; Hatakeyama, S. Chem. Commun. 2007, 4158.
€
(20) Kunz, H.; Pfrengle, W.; Ruck, K.; Sager, W. Synthesis 1991,
1039.
(21) RajanBabu, T. V.; Ayers, T. A.; Halliday, G. A.; K. K. You,
Calabrese, J. C. J. Org. Chem. 1997, 62, 6012.
(22) The most prominent example of pseudo-enantiomeric ligands
are probably the ones employed in the Sharpless asymmetric dihydrox-
ylation, which are derived from diastereomeric cinchona alkaloids:
Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung,
J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.;
Zhang, X.-L. J. Am. Chem. Soc. 1992, 57, 2768.
(23) Ciment, D. M.; Ferrier, R. J. J. Chem. Soc. C 1966, 441.
B
Org. Lett., Vol. XX, No. XX, XXXX