employed in these types of reactions although less ornate
dienes such as Danishefsky’s diene14 have also been used.
Scheme 1. Retrosynthetic Analysis
Figure 1. Bisanthraquinone natural products.
Prior syntheses of symmetrical bisanthraquinones pos-
sessing a 1,10-biaryl linkage include biomimetic coupling of
an anthraquinone or anthrone monomer,8 the Ullman
reaction between brominated anthraquinones,9 and dou-
ble addition of an isobenzofuran-1,3-dione to a biphenyl
intermediate.10 However, the only bisanthraquinone nat-
ural products synthesized include skyrin (0.28ꢀ35% yield,
R1,2 = H, R3 = Me; Figure 1) and hinakurin (e58% yield,
R1 = H, R2,3 = Me; Figure 1), which were formed via
biomimetic syntheses8 and an Ullman reaction, respec-
tively.9a The total syntheses of related bisanthraquinones,
biphyscion, 2,20-epi-cytoskyrin A, and rugulosin have also
been reported; however, biphyscion contains a 2,20-biaryl
linkage,11 and the latter two possess a cage-like “skyrane”
motif.12
Retrosynthetic analysis of (S)-1 revealed a different,
nonbiomimetic approach to this structural subtype that
hinges on the much simpler prospect of forming a bis-
naphthol via oxidative coupling rather than the more
difficult oxidative coupling of an oxidation resistant an-
thraquinone. Specifically, a double DielsꢀAlder reaction
between a binaphtho-para-quinone [(S)-4a] and vinyl ke-
tene acetal 3, followed by aromatization, would readily
revealthe corebisanthraquinonestructure(Scheme1). The
DielsꢀAlder reaction of 1,4-naphthoquinones with vinyl-
ketene acetals, followed by aromatization, is well-known.13
Alkyl trimethylsilyl- or bis(trimethylsilyl)vinyl ketene
acetals, also referred to as Brassard dienes,13 are typically
The key binaphtho-para-quinone (S)-4a would, in turn,
require a selective oxidation of (S)-5, a heretofore unex-
plored undertaking. Enantioselective oxidative binaphthol
coupling of 7, containing substitution at the 8-position,
with our 1,5-diaza-cis-decalin copper catalyst,15 followed
by ester and protecting group removal would provide key
intermediate (S)-6. This asymmetric coupling reaction has
been an integral part of the syntheses of several other
axially or helically chiral naphthalene-based natural pro-
ducts from our group.16,17
Coupling precursor 7 was effectively prepared from
8 via a Fischer esterification and selective benzylation of
the less hindered phenol (Scheme 2). The enantioselective
biaryl coupling of substrate 7 with (R,R)-9 proceeded
(14) Danishefsky, S.; Kitaharai, T. J. Am. Chem. Soc. 1974, 96, 7807–
7808.
(15) (a) Li, X.; Yang, J.; Kozlowski, M. C. Org. Lett. 2001, 3, 1137–
1140. (b) Kozlowski, M. C.; Li, X.; Carroll, P. J.; Xu, Z. Organometallics
2002, 21, 4513–4522. (c) Xie, X.; Phuan, P.-W.; Kozlowski, M. C.
Angew. Chem., Int. Ed. 2003, 42, 2168–2170. (d) Mulrooney, C. A.; Li,
X.; DiVirgilio, E. S.; Kozlowski, M. C. J. Am. Chem. Soc. 2003, 125,
6856–6857. (e) Li, X.; Hewgley, J. B.; Mulrooney, C. A.; Yang, J.;
Kozlowski, M. C. J. Org. Chem. 2003, 68, 5500–5511. (f) Morgan, B. J.;
Xie, X.; Phuan, P.-W.; Kozlowski, M. C. J. Org. Chem. 2007, 72, 6171–
6182. (g) Hewgley, J. B.; Stahl, S. S.; Kozlowski, M. C. J. Am. Chem. Soc.
2008, 130, 12232–12233.
(8) (a) Franck, B.; Chahin, R.; Eckert, H.-G.; Langenberg, R.;
Radtke, V. Angew. Chem., Int. Ed. Engl. 1975, 14, 819–820. (b) Banks,
H. J.; Cameron, D. W.; Raverty, W. D. Aust. J. Chem. 1976, 29, 1509–
1521. (c) Cameron, D. W.; Edmonds, J. S.; Raverty, W. D. Aust. J.
Chem. 1976, 29, 1535–1548.
(9) (a) Tanaka, O.; Kaneko, C. Pharm. Bull. 1955, 3, 284–286. (b)
Shibata, S.; Tanaka, O.; Kitagawa, I. Pharm. Bull. 1955, 3, 278–283. (c)
Tanaka, O. Chem. Pharm. Bull. 1958, 2, 203–208. (d) Iio, H.; Zenfuku,
K.; Tokoroyama, T. Tetrahedron Lett. 1995, 36, 5921–5924.
(10) Scholl, R.; Liese, K.; Michelson, K.; Grunewald, E. Ber. 1910,
43, 512–518.
(11) Hauser, F. M.; Gauuan, P. J. F. Org. Lett. 1999, 1, 671–672.
(12) (a) Nicolaou, K. C.; Papageorgiou, C. D.; Piper, J. L.; Chadha,
R. K. Angew. Chem., Int. Ed. 2005, 44, 5846–5851. (b) Nicolaou, K. C.;
Lim, Y. H.; Piper, J. L.; Papageorgiou, C. D. J. Am. Chem. Soc. 2007,
129, 4001–4013.
(16) (a) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc.
Rev. 2009, 38, 3193–3207. (b) DiVirgilio, E. S.; Dugan, E. C.; Mulroony,
C. A.; Kozlowski, M. C. Org. Lett. 2007, 9, 385–388. (c) O’Brien, E. M.;
Morgan, B. J.; Kozlowski, M. C. Angew. Chem., Int. Ed. 2008, 47, 6877–
6880. (d) Morgan, B. J.; Dey, S.; Johnson, S. W.; Kozlowski, M. C.
J. Am. Chem. Soc. 2009, 131, 9413–9425. (e) Morgan, B. J.; Mulrooney,
C. A.; O’Brien, E. M.; Kozlowski, M. C. J. Org. Chem. 2010, 75, 30–43.
(f) Morgan, B. J.; Mulrooney, C. A.; Kozlowski, M. C. J. Org. Chem.
2010, 75, 44–56. (g) O’Brien, E. M.; Morgan, B. J.; Mulrooney, C. A.;
Kozlowski, M. C. J. Org. Chem. 2010, 75, 57–68.
(17) For a general review, see: Bringmann, G.; Gulder, T.; Gulder,
T. A. M.; Breuning, M. Chem. Rev. 2011, 111, 563–639.
(13) Savard, J.; Brassard, P. Tetrahedron 1984, 40, 3455–3464.
Org. Lett., Vol. 14, No. 6, 2012
1409