ORGANIC
LETTERS
2012
Vol. 14, No. 15
3970–3973
Dihalo-Substituted Dibenzopentalenes:
Their Practical Synthesis and
Transformation to Dibenzopentalene
Derivatives
Feng Xu, Lifen Peng, Akihiro Orita,* and Junzo Otera*
Department of Applied Chemistry, Okayama University of Science, Kita-ku,
Okayama 700-0005, Japan
orita@high.ous.ac.jp; otera@high.ous.ac.jp
Received June 25, 2012
ABSTRACT
Diiodo- and bromo, iodo-substituted dibenzopentalenes were obtained by treatment of 5,6,11,12-tetradehydrodibenzo[a,e]cyclooctene with I2 and
IBr, respectively. These dihalo-substituted pentalenes reacted with terminal ethynes in Sonogashira coupling and with arylboronic acid in
SuzukiꢀMiyaura coupling to give a series of phenylethynyl- and/or aryl-substituted pentalenes. SuzukiꢀMiyaura coupling of the halopentalenes
with in situ prepared pentaleneboronic esters provided bis-, tri-, and tetra(dibenzopentalene)s. It was found that these dibenzopentalene
oligomers underwent facile electrochemical reduction and exhibited a bathochromic shift in UVꢀvis absorption spectra because of their
expanded π-systems.
Great attention has been paid to polycyclic hydrocar-
bons which possess expanded π-conjugation systems such
as pentacene and its derivatives1 because they are promis-
ing as field-effect transistor (FET) and electrolumines-
cence (EL) materials.2 More recently, besides these
aromatic compounds, considerable notice has been taken
of antiaromatic π-expanded pentalenes for their potential
applications to the organic materials.3,4 Saito4a,b and
Yamaguchi4c succeeded in synthesis of dibenzopentalenes
by reduction of silylethyne with lithium and ketoary-
lethyne with lithium naphthalenide (LiNaph), respectively.
(4) (a) Saito, M.; Hashimoto, Y.; Tajima, T.; Ishimura, K.; Nagase,
S.; Minoura, M. Chem.;Asian J. 2012, 7, 480. (b) Saito, M.; Nakamura,
M.; Tajima, T. Chem.;Eur. J. 2008, 14, 6062. (c) Zhang, H.; Karasawa,
T.; Yamada, H.; Wakamiya, A.; Yamaguchi, S. Org. Lett. 2009, 11,
3076. (d) Zerubba, U. L.; Tilley, T. D. J. Am. Chem. Soc. 2010, 132,
11012. (e) Zerubba, U. L.; Tilley, T. D. J. Am. Chem. Soc. 2009, 131,
2796. (f) Kawase, T.; Fujiwara, T.; Kitamura, C.; Konishi, A.; Hirao, Y.;
Matsumoto, K.; Kurata, H.; Kubo, T.; Shinamura, S.; Mori, H.;
Miyazaki, E.; Takimiya, K. Angew. Chem., Int. Ed. 2010, 49, 7728.
(g) Kawase, T.; Konishi, A.; Hirao, Y.; Matsumoto, K.; Kurata, H.;
Kubo, T. Chem.;Eur. J. 2009, 15, 2653. (h) Babu, G.; Orita, A.; Otera,
J. Chem. Lett. 2008, 37, 1296. (i) Willner, I.; Becker, J. Y.; Rabinovitz,
M. J. Am. Chem. Soc. 1979, 101, 395. (j) Hashmi, A. S. K.; Wieteck, M.;
(1) For reviews of pentacene, see:(a) Anthony, J. E. Angew. Chem.,
Int. Ed. 2008, 47, 452. (b) Anthony, J. E. Chem. Rev. 2006, 106, 5028.
(2) (a) Functional Organic Materials; M€uller, T. J. J., Bunz, U. H. F.,
Eds.; Wiley-VCH: Weinheim, 2007. (b) Organic Light Emitting Devices:
Synthesis Properties and Applications; Mullen, K., Scherf, U., Eds.;
Wiley-VCH: Weinheim, 2006. (c) Carbon-Rich Compounds; Haley,
M. M., Tykwinski, R. R., Eds.; Wiley-VCH: Weinheim, 2006.
(3) For a recent review of dibenzopentalenes: (a) Saito, M. Symmetry
2010, 2, 950. For recent examples of 20π antiaromatic systems:
(b) Chase, D. T.; Fix, A. G.; Rose, B. D.; Weber, C. D.; Nobusue, S.;
Stockwell, C. E.; Zakharov, L. N.; Lonergan, M. C.; Haley, M. M.
Angew. Chem., Int. Ed. 2011, 50, 11103. (c) Chase, D. T.; Rose, B. D.;
McClintock, S. P.; Zakharov, L. N.; Haley, M. M. Angew. Chem., Int.
Ed. 2011, 50, 1127. (d) Shimizu, A.; Tobe, Y. Angew. Chem., Int. Ed.
2011, 50, 6906. For an amino-substituted pentalene: (e) Yin, X.; Li, Y.;
Zhu, Y.; Kan, Y.; Li, Y.; Zhu, D. Org. Lett. 2011, 13, 1520.
€
Braun, I.; Nosel, P.; Jongbloed, L.; Rudolph, M.; Rominger, F. Adv.
Synth. Catal. 2012, 354, 555. (k) Katsumoto, K.; Kitamura, C.; Kawase,
T. Eur. J. Org. Chem. 2011, 4885. (l) Yang, J.; Lakshmikantham, M. V.;
Cava, M. P.; Lorcy, D.; Bethelot, J. R. J. Org. Chem. 2000, 65, 6739.
r
10.1021/ol3017353
Published on Web 07/16/2012
2012 American Chemical Society